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Mom’s knee issue
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What is regression discontinuity?

• RDD is a popular particular type of research design.
• Often thought to be the most “credible” of the observational designs,

even though it does not depend on randomization for identification
• A viz-heavy design, so let’s see some figures. (tons of pictures in this

lecture)
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”Jumps are so unnatural that when we see them happen, they beg for
explanation” (p.245)



Tell me what you think is happening



RDD features

• We want to estimate some causal effect of a treatment on some
outcome

• No comparison groups: But we can’t compare two groups (treated
and not treated) because of the self selection which creates
selection bias

• But what if treatment assignment was forced on units because the
firm or agency uses a multi valued variable and splits the sample
when units are above or below some threshold?

• RDD formalizes this setup and under some assumptions will identify
causal effects
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RDD Words and Pictures

• Just keep in mind as do this – RDD is a method of mimicking the
experimental design, as opposed to merely a regression model

• There’s a lot of new terminology if you’re new to RDD
• A picture is worth a thousand words: tons of pictures, but tons of

new concepts too
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DAG for RDD

• In case you forget, DAG is Directed Acyclic Graphs
• X: running/assignment variable. A continuous variable assigning

units to treatment D (X → D), based on a ”cutoff” score c0

• Lack of common support: never have units that are both in the
treatment and control groups for the same value of X → no
overlaps..bad? we extrapolate in RDD
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DAG for RDD

• Continuity assumption: right at c0, the assigement variable X no
longer has a direct efffect on Y

• In words, things (the expected potential outcomes) would have
continue if there was no assigement
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An RDD solution to non-overlaps (Lack of Common
Support)

• Comparing units in a close neighborhood around some cutoff c0

• ATE for a subpopulation can be identified as (X → c0)
• Becasue we focus on a ”subpopulation,” we identify LATE (local

average treatment effect), not ATE
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RDD key termologies

• Running variable, X : a usually continuous score that some actors
use to assign treatments

• Cutoff, c0 or threshold: a particular value at a point on the running
variable above which actors assign treatments to unit

• Discontinuity and/or Jump: Since we are estimating breaks in the
outcome right at the cutoff, and when that happens we say that
there is a “discontinuity” → also means everything else should be in
continuity

• Regression: Many of the models are simple difference in means,
”local” regressions from OLS or global regressions from OLS

13/65



RDD key termologies

• Running variable, X : a usually continuous score that some actors
use to assign treatments

• Cutoff, c0 or threshold: a particular value at a point on the running
variable above which actors assign treatments to unit

• Discontinuity and/or Jump: Since we are estimating breaks in the
outcome right at the cutoff, and when that happens we say that
there is a “discontinuity” → also means everything else should be in
continuity

• Regression: Many of the models are simple difference in means,
”local” regressions from OLS or global regressions from OLS

13/65



RDD key termologies

• Running variable, X : a usually continuous score that some actors
use to assign treatments

• Cutoff, c0 or threshold: a particular value at a point on the running
variable above which actors assign treatments to unit

• Discontinuity and/or Jump: Since we are estimating breaks in the
outcome right at the cutoff, and when that happens we say that
there is a “discontinuity”

→ also means everything else should be in
continuity

• Regression: Many of the models are simple difference in means,
”local” regressions from OLS or global regressions from OLS

13/65



RDD key termologies

• Running variable, X : a usually continuous score that some actors
use to assign treatments

• Cutoff, c0 or threshold: a particular value at a point on the running
variable above which actors assign treatments to unit

• Discontinuity and/or Jump: Since we are estimating breaks in the
outcome right at the cutoff, and when that happens we say that
there is a “discontinuity” → also means everything else should be in
continuity

• Regression: Many of the models are simple difference in means,
”local” regressions from OLS or global regressions from OLS

13/65



RDD key termologies

• Running variable, X : a usually continuous score that some actors
use to assign treatments

• Cutoff, c0 or threshold: a particular value at a point on the running
variable above which actors assign treatments to unit

• Discontinuity and/or Jump: Since we are estimating breaks in the
outcome right at the cutoff, and when that happens we say that
there is a “discontinuity” → also means everything else should be in
continuity

• Regression: Many of the models are simple difference in means,
”local” regressions from OLS or global regressions from OLS

13/65



RDD key termologies

• Running variable, X : a usually continuous score that some actors
use to assign treatments

• Cutoff, c0 or threshold: a particular value at a point on the running
variable above which actors assign treatments to unit

• Discontinuity and/or Jump: Since we are estimating breaks in the
outcome right at the cutoff, and when that happens we say that
there is a “discontinuity” → also means everything else should be in
continuity

• Regression: Many of the models are simple difference in means,
”local” regressions from OLS or global regressions from OLS

13/65



Common types of RDD: Close elections

• A cross-sectional discontinuity
• RQ: effects of winning elections on something (e.g., violence)
• Compare parties that win or lose at the margin, assuming that

parties are quite similar in everything else (except winning)
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Common types of RDD: Geographic RDD

• A cross-sectional discontinuity
• RQ: effects of arbitrary/unnatural borders on something (e.g.,

violence)
• Compare behavior of populations right at the border, assuming that

population are quite similar at both sides of the border
15/65



Common types of RDD: RDD in Time

• A time-series discontinuity
• RQ: effects of an arbitrary intervention in time on something (e.g.,

violence)
• Compare behavior of populations right at the time cutoff, assuming

that population are quite similar at both sides of the time cutoff
16/65



Data requirements

Large sample sizes are characteristic features of the RDD
• If there are strong trends in the running variable, one typically needs

a lot more data than if there weren’t

• If the observations tend to be noisy, we need more data than if it was
less noisy

• We need a lot of data bc we need significant mass at the running
variable to reject the null

• Rewards people with access to firm level data since it can be large
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Sharp vs. Fuzzy RDD

• There’s two classes of RD designs:
1. Sharp RDD: Treatment is a deterministic function (Yes or No) of

running variable, X . Example: Medicare benefits.

2. Fuzzy RDD: Discontinuous “jump” in the probability [0,1] of treatment
when X > c0. Cutoff is used as an instrumental variable for treatment.
Example: attending state flagship

• Fuzzy is a type of IV strategy and requires explicit IV estimators like
2SLS; sharp is reduced form IV and doesn’t require IV-like estimators
– we study it later with IV therefore
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Figure: Sharp (dashed) vs. Fuzzy (solid) RDD



Sharp RDD example

• X (assigment variable): trial dates
• c (cutoff): deterministic time cutoff (1956.10.1)
• D (treatment status): 1, treated. 0, otherwise
• Y (potential outcome): individual sentencing levels for defendants
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Fuzzy RDD example

• X (assigment variable): Motagua fault zones
• c (cutoff): probabalistic geography cutoff, distance to the fault line
• D (treatment status): infrastructure damage
• Y (potential outcome): levels of repression in each municipalities

21/65



Some RDD issues

• Common support: We don’t have units in treatment and control
along the running variable which makes comparisons across the
running variable impossible

• Extrapolation: Without common support, we extrapolate using
models like regression and nonparametric methods by comparing
units just below and above the cutoff to one another but this is
sensitive to data trends, bandwidths, and number of observations →
means a lot of robustness tests needed

• Treatment effects: We are estimating average treatment effects but
only for people at the cutoff and that may not be informative of any
other point on the running variable with extreme heterogeneity →
means a lot of robustness tests needed
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Treatment assignment in the sharp RDD

Deterministic treatment assignment (“sharp RDD”)

In Sharp RDD, treatment status is a deterministic and discontinuous
function of a covariate, Xi:

Di =

1 if Xi ≥ c0

0 if Xi < c0

where c0 is a known threshold or cutoff. In other words, if you know the
value of Xi for a unit i, you know treatment assignment for unit i with
certainty.
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Extrapolation, common support and functional form

• Sharp designs create common support problems because there will
literally never be a unit in treatment and control across the running
variable

• This requires “extrapolation”; prediction beyond the support of the
data (i.e., where treatment switches at cutoff)

• But since you’re predicting, modeling choices like functional form
are key and that’s a structural assumption
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Smoothness/continuity as the identifying assumption

Smoothness of conditional expected potential outcome
functions through the cutoff

E[Y 0
i |X = c0] and E[Y 1

i |X = c0] are continuous (smooth) in X at c0.

• If population average potential outcomes, E[Y 1] and E[Y 0], are
smooth functions of X across the cutoff, c0, then expected potential
average outcomes won’t jump at c0.

• Implies that the confounders should evolve smoothly across the
cutoff
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Smoothness vs Treatment Effect

Figure: Smoothness of potential outcomes (left) vs estimation of LATE (right)

Discussion: Why is the left picture different from the right picture?
Where did the two lines go?
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Potential and observable outcomes

• Smoothness is about potential outcomes:
→ Potential outcomes are on average smoothly changing across the

threshold
• Discontinuity is about realized outcomes:

→ The cutoff is the assignment mechanism
→ The cutoff switches between potential outcomes
→ Therefore if there is a treatment effect, we can observe the realized

outcomes jump/drop at the cutoff
→ If there is a treatment effect, it would be visible but it requires some

extrapolation to see
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Smoothness permits extrapolation

• Smoothness justifies the use of regression models to extrapolate
missing potential outcomes from one side of the cutoff to the other
(has a matching feel)

• Average causal effect is defined at the cutoff, but estimation uses
data left and right around the cutoff

• Once we have the identification strategy justified (smoothness), we
now can run regression (estimation of the causal effect)
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Approximate the functional form

Two ways to estimate the treatment effect at X = c0

1. Curve: Use global and local regressions with f(Xi) equalling a pth

order polynomial (results highly sensitive to functional form)

→ Is our finding of discontinuity due to us mis-specifying the curves?
→ Allowing different slopes of regression lines at the both sides
→ Allowing lines to become curves (higher order polynomials)

2. Weights: Nonparametric kernel methods and local linear regressions
(less sensitive)
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Estimation with extrapolation

• We use extrapolation to estimate average treatment effects with the
sharp RDD which is unbiased under smoothness

• Our statistical models predict expected conditional counterfactuals
using data on the other side of the cutoff

• Keep in mind though: the actual aggregate causal effect is Y 1
i − Y 0

i

at any point on Xi – not across X = c0
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Re-centering the running variable

• Assume a linear function

Yi = α+ β(Xi) + δDi + εi

• People will often “re-center” by subtracting c0 from Xi:

Yi = α+ β(Xi − c0) + δDi + εi

• This doesn’t change the interpretation of the treatment effect; just
the intercept.
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Linearity Problem 1: Smooth but nonlinear expected
potential outcomes

• What if the trend relation E[Y 0
i |Xi] does not jump at c0 but rather is

simply nonlinear? You could get spurious results

• You’ll likely use higher order polynomial transformations of the
running variable

33/65
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Potential outcomes and nonlinear running variable

• But what if the potential outcomes aren’t just nonlinear – the
nonlinearities are different for E[Y 1] than they are for E[Y 0]

• We can generalize the potential outcome expressions by allowing
them to depend on the running variables, but in different ways
depending on whether it is or is not treated
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Potential outcomes and nonlinear running variable

• This will require saturated models in which you include them both
individually and interacting them with Di.

E[Y 0
i |Xi] = α+ β01X̃i + β02X̃

2
i + · · ·+ β0pX̃

p
i

E[Y 1
i |Xi] = α+ δ + β11X̃i + β12X̃

2
i + · · ·+ β1pX̃

p
i

where X̃i is the centered running variable (i.e., Xi − c0).
• Notice the treatment effect in the second line, and the intrinsic ATE

when comparing the two equations, E[Y 0
i − Y 1

i |Xi]
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Linearity Problem 2: Interact running variable (X) with
treatment (D)

• If you believe the effect of the running variable on the outcome
differs above and below the threshold, adding an interaction term
D ×X can allow the slope of the relationship to change at the
threshold. This helps model potential non-linearities.

Yi = β0 + β1Di + β2(Xi − ci) + β3(Xi − ci) ∗Di + ϵi (1)

β1 = E[Yi|Di = 1, Xi = c]− E[Yi|Di = 0, Xi = c] (2)

• β1 is the treatment effect at the cutoff.
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Regression equation: higher order polynomial and
interaction

• Let x̃ = (Xi − ci)

• Regression model you estimate is:

Yi = α+ β01x̃i + β02x̃
2
i + · · ·+ β0px̃

p
i

+δDi + β∗
1Dix̃i + β∗

2Dix̃
2
i + · · ·+ β∗

pDix̃
p
i + εi

where β∗
1 = β11 − β01, β∗

2 = β21 − β21 and β∗
p = β1p − β0p
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Estimation without and with specifying nonlinear
running variable

Figure: Spurious treatment effects with linear specification (left) versus 3rd
order polynomial (right)

Look close: See how the lines don’t touch on the left, but they do on the
right?
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The trade-off: Comment about higher order polynomials

• If you don’t have a lot of data, you will likely have to have very large
bandwidths just to get the sample size up

• With a lot of data far from the cutoff, you’ll likely overfit with a higher
order polynomial series

• But higher order polynomials can have overfitting problems leading
to poor prediction beyond the cutoff

• Gelman and Imbens (2018) caution against overfitting on these
global regressions (i.e., quadratics)
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Some new terms: all about the windows

• Kernels make a window and give you the shape of the window (e.g.,
triangular kernels weight the observations differently within the
window)

• Bandwidth is the “length” of the window (small ones are tiny
windows, bigger ones, bigger windows – think of a histogram)

• Bins are about the interval itself (a partition)
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Local linear nonparametric regressions

• Least squares approaches models the counterfactual using
functional forms which is parametric, but it can have poor predictive
properties on counterfactuals above/below the cutoff

• Another way of approximating the running variable flexibly f(Xi) is
to use a nonparametric kernel

41/65



Local linear nonparametric regressions

• Local linear nonparametric regression substantially reduces the bias
• Think of it as a weighted regression restricted to a window – kernel

provides the weights to that regression.
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Choices you have to make

1. Choose the bandwidth h: the window

2. Choose the kernel K(·): uniform vs. traingular

3. Choose the polynomial ordering p: linear vs. quadratic fit

We have a broad set of writings and suggestions around each of these
things, and the issues around choices is always subjective researcher
bias, uncertainty and various forms of bias → You do all!
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Animation of a local linear regression

https://twitter.com/page_eco/status/958687180104245248
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Types of kernels

• Rectangular uniform weights equivalent to E[Y ] at a given bin on X

• Triangular draws a straight line from the threshold to the edge of the
bandwidth and weights along the line

• Epanechnikov is similar but is more like a parabola
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Figure: From Cattaneo, et al. (2019)
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Estimation with kernels

• Cattaneo, et al. (2019) recommend using the triangular kernel
because when you use it with a bandwidth that optimizes mean
squared error, you can get a point estimate that is optimal.

• Triangular kernels assign zero weight to all observations outside
bandwidth h interval and positive weights within it

• Weights are maximized at the cutoff and decline symmetrically and
linearly as the value of the running variable gets further away

47/65



Estimation with kernels

• Cattaneo, et al. (2019) recommend using the triangular kernel
because when you use it with a bandwidth that optimizes mean
squared error, you can get a point estimate that is optimal.

• Triangular kernels assign zero weight to all observations outside
bandwidth h interval and positive weights within it

• Weights are maximized at the cutoff and decline symmetrically and
linearly as the value of the running variable gets further away

47/65



Polynomial order

• Simple difference in means (i.e., p order of zero) is like a histogram
with uniform weights

• Suffers from what is called the “boundary problem” – the estimation
of the true expected potential outcomes at the cutoff is biased with
trends in the running variable

• But even after choosing kernel weights, we aren’t done as then there
is the business of choosing polynomial order
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Polynomial terms

• Two conceptual issues to keep in mind
1. No polynomials has boundary problems, but
2. Higher order polynomials, though, suffer from severe overfitting

problems

• Local linear RD is the preferred method, but this is where we end up
in the world of choosing the bandwidths, h, because that controls
the width (and thus selects the units) of the neighborhood around
the cutoff that will be used to fit the model
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Figure: From Cattaneo, et al. (2019)
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Bias and variance?

Bias term
• When we approximate the unknown functions with p, h and K(·),

there’s some approximation error because we do now actually know
the true function

• Think about the earlier picture – when we used the larger bandwidth
and p of zero, we came up short. Why? Because of the curvature of
the functions we were approximating

• → The smaller the window, the more precision we have in estimation
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Bias and variance?

Variance term
• Variance depends on sample size and bandwidth h

• As number of observations near the cutoff falls, the contribution of
the variance term to MSE grows and vice versa

• Variability of the the point estimator depends therefore on density at
the cutoff (which gets back to why RD tends to be data intensive in
the first place)

• → The more observation, the more variance we have in estimation
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So what do we do? Optimal Bandwidths

• Most approaches have some balancing act between bias and
variance that they’re trying to address

• Minimizing the MSE of the local estimator, δ̂, given a choice of p and
K(·) has become the most popular since MSE is the sum of squared
bias and variance

MSE(δ̂) = Bias2(δ̂) + V ariance(δ̂)

• If you choose to minimize MSE, you are choosing h – hence “optimal
bandwidths”

minh>0

(
h2(p+1)B2 +

1

nh
V

)
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Optimal Bandwidths

• Solution to that minimization problem is hMSE and is the
MSE-optimal bandwidth choice

hMSE =

(
V

2(p+ 1)
B2

) 1
(2p+3)

n−1/(2p+3)

which directly addresses the bias-variance trade-off

• Optimal bandwidths that minimize MSE are proportional to that last
term and therefore MSE-optimal bandwidths increase with V (more
observations) and decrease with B (less observations)

• Hence why optimal bandwidths are “data driven” and automated
which takes away some of the subjective decisions researchers
must make

54/65



Optimal Bandwidths

• Solution to that minimization problem is hMSE and is the
MSE-optimal bandwidth choice

hMSE =

(
V

2(p+ 1)
B2

) 1
(2p+3)

n−1/(2p+3)

which directly addresses the bias-variance trade-off
• Optimal bandwidths that minimize MSE are proportional to that last

term and therefore MSE-optimal bandwidths increase with V (more
observations) and decrease with B (less observations)

• Hence why optimal bandwidths are “data driven” and automated
which takes away some of the subjective decisions researchers
must make

54/65



Optimal Bandwidths

• Solution to that minimization problem is hMSE and is the
MSE-optimal bandwidth choice

hMSE =

(
V

2(p+ 1)
B2

) 1
(2p+3)

n−1/(2p+3)

which directly addresses the bias-variance trade-off
• Optimal bandwidths that minimize MSE are proportional to that last

term and therefore MSE-optimal bandwidths increase with V (more
observations) and decrease with B (less observations)

• Hence why optimal bandwidths are “data driven” and automated
which takes away some of the subjective decisions researchers
must make

54/65



Implementation with software

• You have choices for implementing this – manually (see Cattaneo, et
al. (2019) section 4.2.4, or with packages like rdrobust

• Very flexible – choose kernels (e.g., triangular), choose polynomials,
choose number of bandwidths h

• But remember choosing h is not advisable bc of what we just said,
so there is a separate package called rdbwselect which selects the
MSE-optimal bandwidth for the local estimator (but you still choose
p and K(·))
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Implementation with software

• Tons of options with rdbwselect – different kernels, even different
bandwidths left and right of the cutoff

• Once you use it, you can pass it on to rdrobust in a second stage, or
• Just use bwselect within the syntax of rdrobust itself (we will

review this with our Hansen exercise later)
• All of this can be incorporated into plotting too with rdplot
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Main Challenges to RDD and Robustness Tests

Classify your concern regarding smoothness violations into two
categories:
• Manipulation on the running variable → McCrary Density Test

• Endogeneity of the cutoff → Donut hole RDD

Most robustness is aimed at building credibility around these
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Manipulation of your running variable score

• Treatment is not as good as randomly assigned around the cutoff, c0,
when agents are able to manipulate their running variable scores.
This happens when:

1. the assignment rule is known in advance
2. agents are interested in adjusting
3. agents have time to adjust
4. administrative quirks like nonrandom heaping along the running

variable

• In other words, we are looking for evidence of people choosing their
value of Xi so as to get just barely get into the treatment
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McCrary Density Test

• Goal: show no apparant discontinuity in the number of observations
around the cutoff

• Assumes a null where the density is continuous at the cutoff point
• Under the alternative hypothesis, the density increases at the cutoff

as people sort onto the desirable side of the cutoff
• This is oftentimes visualized with confidence intervals illustrating the

effect of the discontinuity on density - you need no jump to pass this
test

• Not perfect, but pretty ingenious and is based on rational choice
when you think about it

59/65



McCrary Density Test

• Goal: show no apparant discontinuity in the number of observations
around the cutoff

• Assumes a null where the density is continuous at the cutoff point

• Under the alternative hypothesis, the density increases at the cutoff
as people sort onto the desirable side of the cutoff

• This is oftentimes visualized with confidence intervals illustrating the
effect of the discontinuity on density - you need no jump to pass this
test

• Not perfect, but pretty ingenious and is based on rational choice
when you think about it

59/65



McCrary Density Test

• Goal: show no apparant discontinuity in the number of observations
around the cutoff

• Assumes a null where the density is continuous at the cutoff point
• Under the alternative hypothesis, the density increases at the cutoff

as people sort onto the desirable side of the cutoff
• This is oftentimes visualized with confidence intervals illustrating the

effect of the discontinuity on density - you need no jump to pass this
test

• Not perfect, but pretty ingenious and is based on rational choice
when you think about it

59/65



Steps for a density test in RDD

1. Count observations for a chosen bin (needs multiple units in other
words per bin)

2. Estimate your nonlinear OLS model with quadratics in the running
variable on the counts

3. Do you reject the null at the cutoff? No rejection is good. Rejection is
bad.

There are updates to McCrary (2008) using other density tests but this
is the basic idea
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Simulations of density tests

also necessary, and we may characterize those who reduce their labor supply as those with coaipc=f i and
bi4aið1" f iÞ=d.

Fig. 2 shows the implications of these behavioral effects using a simulated data set on 50,000 agents with
linear utility. The simulation takes ðai;biÞ to be distributed as independent normals, with E½ai% ¼ 12, V ½ai% ¼ 9,
E½bi% ¼ 0, and V ½bi% ¼ 1, and the f i distribution to be uniform on ½0; 1% and independent of ðai; biÞ. The
earnings threshold is set at c ¼ 14.

This data generating process is consistent with (A0). If the program did not exist, then period 1 earnings
would be Ri0 ¼ ai. The conditional expectation of ai given Ri0 is thus just the 45

' line, which is continuous; the
conditional expectation of bi given Ri0 is flat, which is likewise continuous; and the density of Ri0 is the normal
density, hence continuous. Panel A of Fig. 2 is a local linear regression estimate of the conditional expectation
of bi given Ri0. The smoothness of the conditional expectation indicates the validity of (A0).

However, even though (A0) is satisfied, agents’ endogenous labor supply creates an identification problem.
The actual running variable is not Ri0, but Ri, which is manipulated by those agents who find it worthwhile to
do so. Panel B gives a local linear regression estimate of the conditional expectation of bi given Ri. This panel

ARTICLE IN PRESS

Fig. 1. The agent’s problem.
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Fig. 2. Hypothetical example: gaming the system with an income-tested job training program: (A) conditional expectation of returns to
treatment with no pre-announcement and no manipulation; (B) conditional expectation of returns to treatment with pre-announcement
and manipulation; (C) density of income with no pre-announcement and no manipulation; (D) density of income with pre-announcement
and manipulation.

J. McCrary / Journal of Econometrics 142 (2008) 698–714706

Figure: From McCrary (2008). Left shows failing to reject. Right shows rejection of the null.
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Donut hole RDD

• Estimates should not logically be sensitive to the observations at the
cutoff – if it is, then smoothness may be violated

• Drop units in the vicinity of the cutoff and re-estimate the model
(called “donut hole”)

• Reanalyzing the birthweight mortality data, effects were 50% smaller
than previously reported
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Other common robustness checks

Table: Robustness checks used in the economics literature (Hausman and
Rapson 2018)

Check Proportion of publications

Data viz 0.79
bandwidth or polynomial order 0.79
Discontinuity test on controls 0.36
Placebo 0.29
Donut hole 0.14
Test for autoregression 0.14 (RDiT)
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Discussion: RDD Pros

• Intuitive: mom’s kneecap example
• RDD is viewed as very credible among observational designs; for

some reason people feel the smoothness assumption is easier to
defend

• Mild assumptions, easy to justify: It may be because you only have
to defend the exogeneity of the treatment at c0 since you’re
essentially arguing the potential outcomes wouldn’t have jumped
there in counterfactual

• Rewards people who have access to large datasets bc as N grows,
the mass at the cutoff should as well, giving you shorter windows for
estimation and therefore lower bias and lower variance
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Discussion: RDD Caveats

• Not always easy to find a jump
• Obsession on counterfactuals: People want to see counterfactuals

(on samples where there is no intervention) as your comparison sets
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