Week 2: Fixed-effects and random-effects models POLI803

Howard Liu

August, 2024

University of South Carolina

Outline for today

② Fixed-effects model

3 Random-effects (mixed-effects) model

.

Dataset types

- Cross-sectional data
- 2 Time-series data
- 3 Time-series cross-sectional data, also called panel data

.

Panel data

	+							4
	country	year	spend	left	trade	fdi	gdppc	i
1.	Australia	1981	34.3	0	32.8	1.8	12689	i
2.	Australia	1982	36.9	0	33.5	1.8	12132	I
З.	Australia	1983	37.1	75	30.5	2.1	12784	I
4.	Australia	1984	38.4	100	32.3	1	13274	I
5.	Australia	1985	38.8	100	36	2.3	13583	l
6.	Austria	1981	50.3	100	77.9	.8	10407	i
7.	Austria	1982	50.9	100	74.4	.5	10484	I
8.	Austria	1983	51.2	88	73.5	.6	10728	I
9.	Austria	1984	50.8	80	77.8	.3	10877	I
10.	Austria	1985	51.7	80	81.3	.4	11131	ļ
11.	Belgium	1981	63.9	47	137.9	1.4	10829	i
12.	Belgium	1982	63.9	0	144.6	1.5	10986	i
13.	Belgium	1983	63.9	0	147.4	1.9	10972	I
14.	Belgium	1984	62.6	0	156.3	.9	11236	I
15.	Belgium	1985	62.3	0	151.1	1.5	11285	ļ
10		1001	41 F		го 7		14555	ļ
10.	Canada	1901	41.5	0	23.1	. /	12740	÷
10	Canada	1962	40.0	0	40.2	.1	14105	÷
10.	Canada	1004	41.2	0	40 F2 7	.9	14105	÷
19.	Canada	1904	40.0	0	53.1	1.1	14954	÷
20.		1905	4/.1		54.4	. 2	19909	i
21.	Denmark	1981	59.8	100	72.3	.4	11153	i
22.	Denmark	1982	61.2	75	72.3	.3	11526	I
23.	Denmark	1983	61.6	0	70.8	.4	11828	I
24.	1	••						ļ

POLI803 | Week 2

Replication

We can't (shouldn't) apply simple OLS

We can't (shouldn't) apply simple OLS

Regular regression models assume the data set is cross-sectional.

- e observations are independent across unit and across time (i.i.d. independent and identically distributed random variables);
- we can meaningfully compare any pairs observations in the data set (but can we really compare United States 2001 with Switzerland 1990, for example?);
- = unit-level idiosyncrasies and time-level idiosyncrasies are ignorable.

Running standard regression models with panel data may lead to **biased inferences**.

Replication

What would happen if we did?

Age and life satisfaction (lsat)

	+				+
	I	name	year	age	lsat
	÷				
1.	T	John	1968	28	8
2.	T	John	1969	29	6
з.	1	John	1970	30	5
	÷				
4.	T	Paul	1968	26	5
5.	1	Paul	1969	27	2
6.	1	Paul	1970	28	1
	Ŀ				
7.	Ť.	George	1968	25	4
8.	1	George	1969	26	3
9.	Τ	George	1970	27	1
	Ŀ				
10.	Т	Ringo	1968	28	9
11.	T	Ringo	1969	29	8
12.	Т	Ringo	1970	30	6
	+.				+

Replication

What would happen if we did?

Age and life satisfaction (lsat)

	+.				+
	į	name	year	age	lsat
1.	1	John John	1968	28	ا ا 8
2.	i	John	1969	29	6
з.	Ť.	John	1970	30	5
	÷				
4.	Т	Paul	1968	26	5
5.	Т	Paul	1969	27	2
6.	T	Paul	1970	28	1
	÷				
7.	T	George	1968	25	4
8.	Т	George	1969	26	3
9.	T	George	1970	27	1
	÷				
10.	T	Ringo	1968	28	9
11.	T	Ringo	1969	29	8
12.	Т	Ringo	1970	30	6
	+				+

Replication

What would happen if we did?

Age and life satisfaction (lsat)

	+.				+
	į	name	year	age	lsat
1	1	 Iohn	1068	28	 8
· ·	1	301111	1300	20	01
2.		John	1969	29	6
з.		John	1970	30	5
	÷				
4.	T	Paul	1968	26	5
5.	T	Paul	1969	27	2
6.	T	Paul	1970	28	1
	÷				
7.	Т	George	1968	25	4
8.	T	George	1969	26	3
9.	T	George	1970	27	1
	÷				
10.	Т	Ringo	1968	28	9
11.	Т	Ringo	1969	29	8
12.	Т	Ringo	1970	30	6
	+.				+

Replication

(Panel data modeling)

What would happen if we did?

Age and life satisfaction (lsat)

	+					+
	Ì	name	year	age	lsat	
1.	1	John	1968	28	8	
2.	i.	John	1969	29	6	i
з.	1	John	1970	30	5	I
						I
4.	1	Paul	1968	26	5	I
5.	1	Paul	1969	27	2	I
6.	1	Paul	1970	28	1	l
						I
7.	1 (George	1968	25	4	I
8.	1.0	George	1969	26	3	l
9.	1.0	George	1970	27	1	l
						l
10.	1	Ringo	1968	28	9	I
11.	1	Ringo	1969	29	8	l
12.	I.	Ringo	1970	30	6	l
	+					ł

.

POLI803 | Week 2 6 / 27

What we should do instead

We need to fit four regression lines, rather than one

How do we do this?

What we should do instead

We need to fit four regression lines, rather than one

How do we do this?

.

• Create a series of dummy variables, one for each person

What we should do instead

We need to fit four regression lines, rather than one

How do we do this?

- Create a series of dummy variables, one for each person
- Include these four dummy variables, while dropping the intercept

.

Replication

age	0.690	-1.625^{***}
	(0.491)	(0.166)
	(01102)	(0.200)
laha.		
John		53.458
		(4.819)
Paul		46.542***
		(4, 488)
		(1.100)
Dimme		F 4 700***
Ringo		54.792
		(4.819)
George		44.917***
0		(4.322)
		()
Constant	1/ 300	
Constant	-14.322	
	(13.656)	
Observations	12	12
R ²	0 165	0 996
Adjusted R ²	0.081	0.003
Residual Std. Error	2.012 (df = 10)	0.409 (df = 7)
Note:	*n<0.1·**n<	-0.05 [.] ***p<0.01
	P \ U.I, P \	$\langle 0.00, P \langle 0.01 \rangle$

POLI803 | Week 2 8 / 27

When we run a regression model that gives each unit (e.g., country, individual, etc.) a different intercept, we say we run a fixed-effects (FE) model

- Unit-specific intercepts are called unit-specific fixed-effects
- Such a model allows us to control for any unit-specific confounders
- We are essentially making a within-unit comparison
 - Compare Ringo's lsat when he was 28 with Ringo's lsat when he was 29 (within)
 - We never compare Ringo's lsat when he was 28 with Paul's lsat when he was 28 (between)

• How does FE work specifically?

$$y_{it} = \beta_1 x_{ij} + \frac{a_i}{a_i} + u_{ij} \qquad (1)$$

• How does FE work specifically?

.

$$y_{it} = \beta_1 x_{ij} + a_i + u_{ij} \qquad (1)$$

• Now, for each i, average this equation over time. We get

$$\bar{y}_i = \beta_1 \bar{x}_i + \frac{a_i}{a_i} + \bar{u}_i \qquad (2)$$

• How does FE work specifically?

.

$$y_{it} = \beta_1 x_{ij} + a_i + u_{ij} \qquad (1)$$

• Now, for each i, average this equation over time. We get

$$\bar{y}_i = \beta_1 \bar{x}_i + \frac{a_i}{a_i} + \bar{u}_i \qquad (2)$$

• Because a_i is fixed over time, it appears in both equations. If we subtract (2) from (1) for each t, we wind up with

$$y_{it} - \bar{y}_i = \beta_1 (x_{it} - \bar{x}_i) + u_{it} - \bar{u}_i$$
 (3)

POLI803 | Week 2 10 / 27

• How does FE work specifically?

$$y_{it} = \beta_1 x_{ij} + a_i + u_{ij} \qquad (1)$$

• Now, for each i, average this equation over time. We get

$$\bar{y}_i = \beta_1 \bar{x}_i + \frac{a_i}{a_i} + \bar{u}_i \qquad (2)$$

• Because a_i is fixed over time, it appears in both equations. If we subtract (2) from (1) for each t, we wind up with

$$y_{it} - \bar{y}_i = \beta_1 (x_{it} - \bar{x}_i) + u_{it} - \bar{u}_i$$
 (3)

• This is called **time-demeaning** or **within transformation** because we only estimate time-demeaned variables and the unobserved effect (like country-specific effects) *a_i* disappeared

The plm package

We use the plm (panel linear model) package to make this easier

- Install the package: install.packages("plm", dependencies = TRUE)
- Load the package: library(plm)
- Declare the data to be a panel data:

pdata.frame(data, index = c("name", "year"))

The plm package

To run a simple model (i.e., a model that ignores the panel structure),

```
plm(y \sim x, data, model = "pooling")
```

To run a fixed-effects model (i.e., a model that fits a different line to a different unit),

plm(y \sim x, data, model = "within")

Example: Effect of globalization on welfare state

Garrett and Mitchell (2001): "Globalization, government spending and taxation in the OECD" $\!\!\!$

- IDV: globalization (total trade, imports from low wage economies, FDI, market integration)
- DV: welfare effort (government spending and taxation)
- Data: OECD countries (18 advanced economies for 1961–1994)

summary(data) would be hardly enough

> summary(gm)				
country	cnum	year	govcons	govconsl
Length:612	Min. : 1.0	Min. :1961	Min. : 7.30	Min. : 7.30
Class :character	r 1st Qu.: 5.0	1st Qu.:1969	1st Qu.:14.30	1st Qu.:14.10
Mode :character	Median : 9.5	Median :1978	Median :17.00	Median :16.80
	Mean : 9.5	Mean :1978	Mean :16.91	Mean :16.74
	3rd Qu.:14.0	3rd Qu.:1986	3rd Qu.:18.93	3rd Qu.:18.90
	Max. :18.0	Max. :1994	Max. :29.60	Max. :29.60
sstran	sstranl	trade	lowwage	fdi
Min. : 3.70	Min. : 3.700	Min. : 9.40	Min. : 6.20	Min. : 0.000
1st Qu.: 9.50	1st Qu.: 9.175	1st Qu.: 39.27	1st Qu.:12.80	1st Qu.: 0.600
Median :13.35	Median :13.050	Median : 52.90	Median :16.65	Median : 1.000
Mean :13.69	Mean :13.378	Mean : 57.10	Mean :19.05	Mean : 1.449
3rd Qu.:17.02	3rd Qu.:16.700	3rd Qu.: 71.72	3rd Qu.:23.43	3rd Qu.: 1.800
Max. :28.90	Max. :28.900	Max. :156.30	Max. :46.00	Max. :10.300
NA's :48	NA's :44			NA's :68

Figure out

- Cross-sectional unit
- Time-series unit

Cross-sectional unit

```
> table(gm $ country)
```

Australia	Austria	Belgium	Canada	Denmark	Finland	France
34	34	34	34	34	34	34
Germany	Ireland	Italy	Japan	Netherlands	New Zealand	Norway
34	34	34	34	34	34	34
Sweden	Switzerland	UK	US			
34	34	34	34			
>						

```
Time-series unit
```

```
> table(gm $ year)
```

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994

Once you figure these two things out, then provide numerical and graphical summaries of X and Y for each unit and/or over time

To obtain numerical summaries by unit, we use the by function

To obtain numerical summaries by unit, we use the by function

by(X,]	ED, FUN	CTION)				
> by(gm	\$ spend,	gm \$ cou	untry, summary)	1		
gmacount	ry: Aust	ralla				
Min.	1st Qu.	Median	Mean 3rd Qu.	Max.	NA's	
22.40	25.20	33.70	31.62 36.90	39.80	1	
gm\$count	ry: Aust	ria:				
Min.	1st Ou.	Median	Mean 3rd Ou.	Max.		
35.10	39.92	47.90	45.67 50.88	53.80		
gm\$count	ry: Belg	jium				
Min.	1st Qu.	Median	Mean 3rd Qu.	Max.		
33.80	41.87	54.85	50.66 57.67	63.90		
gm\$count	ry: Cana	ıda				
Min.	1st Qu.	Median	Mean 3rd Qu.	Max.		
28.40	33.23	40.10	39.73 46.55	52.10		
	-				POLI803	 3 Week 2

Replication

Government spending and unemployment

Replication

Government spending and unemployment

Government spending

18 / 27

Government spending

Unemployment

Trade

20 / 27

Estimate regression models

- Tell R that this is a panel data set bm.p <- pdata.frame(bm, index = c("country", "year"))
- 2 Estimate
 - Pooled model plm(Y ~ X, data, model = "pooling")
 - FE (within-effect) model plm(Y ~ X, data, model = "within")
- Ompare the results

POLI803 | Week 2 21 / 27

(Replication)

	Pooling	FE
Unemployment	1.120*** (0.089)	1.366*** (0.087)
Trade	0.143*** (0.012)	0.202*** (0.026)
Leftist	0.066*** (0.009)	-0.012* (0.007)
Growth	-1.014*** (0.126)	-0.830*** (0.085)
Christian Democrat	0.044*** (0.012)	-0.051*** (0.015)
Constant	28.396*** (0.886)	
Observations R ² Adjusted R ²	557 0.569 0.563	557 0.700 0.672
Note:	*p<0.1; **p<	(0.05; ***p<0.01

Testing if FE is better than pooled

Whenever you run a FE model, perform a test (Lagrange Multiplier Test) that compares it with the pooled model

> pFtest(mod.fe, mod.pool)

F test for individual effects

data: spend ~ unem + trade + left + growthpc + cdem F = 55.6187, df1 = 16, df2 = 535, p-value < 2.2e-16 alternative hypothesis: significant effects

The null hypothesis: FE = pooled (FE doesn't improve)

- A small *p*-value ~ FE needed
- A *p*-value > 0.10 \rightsquigarrow FE not necessary

23 / 27

Random-effects model

FE models have several drawbacks:

- Efficienty problem: The number of intercepts may get very large. But, the degree of freedom = n - k must be positive (where k is the number of α s and β s) for us to be able to identify unique values of α s and β s
- Time-invariant variable cannot be included on the RHS!

Random-effects model

A random-effects (RE) model can be an alternative:

- Statistian called "mixed effect model": Including both within and across unit variation together (Z)
- Instead of estimating unit-specific intercepts directly, RE models estimate the standard deviation of the intercepts
- You can estimate random intercepts (with same slopes) or random intercepts and slopes \rightarrow more flexibility

$$y_{it} = \beta_1 x_{ij} + a_i + u_{ij}$$
(1)
$$a_i = \beta_0 + \beta_2 Z_t + e_t$$

- where the latent vairable, Z_t, contains both within and between variation to be explained. So RE is a hierarchical/muti-level model
- Based on a set of assumptions
 - REs follow a normal distribution
 - REs are not correlated with Xs (covariates not correlated with unit-specific structure)

POLI803 | Week 2 24 / 27

Which model to use – FE or RE?

- Theoretical answer
 - If you can be absolutely certain that unit-specific intercepts are uncorrelated with the Xs, use the RE model (it's more efficient)
 - If you are sure that unit-specific intercepts are correlated with the Xs, use the FE approach (it's more **flexible**)
- Reality:
 - If you have a time-invariant variable as your main treatment variable, go for RE
 - If your theory cares not only within unit comparison, but also cross unit comparison, go for RE (e.g. econ ineqaulity vs civil war)
 - Causal inference folks care about eliminating heterogenous treatment effects, so use FE more.
- Hausman test tests this empirically:

phtest(mod.re, mod.fe)

• The null hypothesis is that RE and FE are equivalent

Which model to use – FE or RE?

- Theoretical answer
 - If you can be absolutely certain that unit-specific intercepts are uncorrelated with the Xs, use the RE model (it's more efficient)
 - If you are sure that unit-specific intercepts are correlated with the Xs, use the FE approach (it's more **flexible**)
- Reality:
 - If you have a time-invariant variable as your main treatment variable, go for RE
 - If your theory cares not only within unit comparison, but also cross unit comparison, go for RE (e.g. econ ineqaulity vs civil war)
 - Causal inference folks care about eliminating heterogenous treatment effects, so use FE more.
- Hausman test tests this empirically:

phtest(mod.re, mod.fe)

- The null hypothesis is that RE and FE are equivalent
- When p-value is small enough, you have to use FE POLI803 | Week 2

25 / 27

(Replication)

	Pooled	FE	RE
Unemployment	1.120***	1.366***	1.359***
	(0.089)	(0.087)	(0.083)
Turda	0 1 4 2 * * *	0 202***	0 100***
Trade	(0.143)	(0.202^{+++})	(0.022)
	(0.012)	(0.020)	(0.023)
Leftist	0.066***	-0.012^{*}	-0.009
	(0.009)	(0.007)	(0.007)
			· · · ·
Growth	-1.014^{***}	-0.830***	-0.838***
	(0.126)	(0.085)	(0.086)
Christian Democrat	0 044***	-0.051***	-0 044***
Christian Democrat	(0.012)	(0.015)	(0.015)
	(0.012)	(0.015)	(0.013)
Constant	28.396***		27.065***
	(0.886)		(1.768)
Observations	557	557	557
R ²	0.569	0.700	0.689
Adjusted R ²	0.563	0.672	0.682
Note:	*	p<0.1; **p<0.0	5; ***p<0.01
		•	POLI803

Testing if FE is better than RE

> phtest(mod.fe, mod.re)

Hausman Test

data: spend ~ unem + trade + left + growthpc + cdem chisq = 43.4071, df = 5, p-value = 3.056e-08alternative hypothesis: one model is inconsistent

The null hypothesis: FE = RE

- A small *p*-value ~ FE needed
- A p-value > 0.10 ~ FE not necessary (RE is OK)