Week 4: Ordered Logit Model POLI803

Howard Liu

Week 4, 2024

University of South Carolina

POLI803 | Week 4 1 / 31

Outline

Ordered Logistic Regression

• Random utility representation

• Ordered logit (probit) models

• Marginal effect of x

.

Review: logit model

We have a binary DV:

$$Y = \begin{cases} 1 & (\text{vote}) \\ 0 & (\text{not vote}) \end{cases}$$

Review: logit model

We have a binary DV:

 $Y = \begin{cases} 1 & (\text{vote}) \\ 0 & (\text{not vote}) \end{cases}$

The values of Y are determined by P or Pr(Y = 1),

.

Review: logit model

We have a binary DV:

 $Y = \begin{cases} 1 & (\text{vote}) \\ 0 & (\text{not vote}) \end{cases}$

The values of Y are determined by P or Pr(Y = 1),

$$Y^* = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \dots + \beta_k X_k$$
$$\hat{P} = \Lambda(Y^*)$$

Review: logit model

We have a binary DV:

 $Y = \begin{cases} 1 & (\text{vote}) \\ 0 & (\text{not vote}) \end{cases}$

The values of Y are determined by P or Pr(Y = 1),

$$Y^* = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \dots + \beta_k X_k$$
$$\hat{P} = \Lambda(Y^*)$$

• $Y^* =$ latent utility (propensity).

• Y^* can range between $-\infty$ and ∞ , but \hat{P} ranges between 0 and 1.

• We don't care about the actual $(Y^*) \rightarrow$ but care about the more interpretable latent probability $[0,1] \hat{P}$ (the s-curve)

.

Random utility representation (thresholds)

There is an alternative interpretation of the same model

 $Y = \begin{cases} 1 & (\text{vote}) \\ 0 & (\text{not vote}) \end{cases}$

Random utility representation (thresholds)

There is an alternative interpretation of the same model

$$Y = \begin{cases} 1 & (\text{vote}) \\ 0 & (\text{not vote}) \end{cases}$$

We think of Y^* as an <u>unobservable</u> random utility of voting, whereas Y is the actual observation

$$Y^* = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

Random utility representation (thresholds)

There is an alternative interpretation of the same model

$$Y = \begin{cases} 1 & (\text{vote}) \\ 0 & (\text{not vote}) \end{cases}$$

We think of Y^* as an <u>unobservable</u> random utility of voting, whereas Y is the actual observation

$$Y^* = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

 Actor votes (Y = 1) when Y* is greater than some threshold (usually 0); Pr (Y* > threshold) → Pr(Y* = 1)

• Conceptual steps:
$$Xs \Rightarrow Y^* \Rightarrow Y$$

.

Random utility representation

$$Y^* = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

$$Y = \left\{ egin{array}{ccc} 1 & (ext{when } Y^* > 0) \ 0 & (ext{when } Y^* \leq 0) \end{array}
ight.$$

- Systematic component: $\mathbf{X}\boldsymbol{\beta} = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \dots + \beta_k X_k$
- Stochastic component: ϵ follows a logistic distribution

(Review: Logit)

Random utility representation (an example)

Consider a simple model as an example:

$$Y^* = \alpha + \beta_1 X_1 + \epsilon$$

where X_1 takes three values: 0, 1, 2, and $\hat{lpha} = 0$ and $\hat{eta} = 1$

Random utility representation (an example)

Consider a simple model as an example:

$$Y^* = \alpha + \beta_1 X_1 + \epsilon$$

where X_1 takes three values: 0, 1, 2, and $\hat{\alpha} = 0$ and $\hat{\beta} = 1$

$$Y^* = \left\{ egin{array}{ll} 0+\epsilon & (ext{when } X_1=0) \ 1+\epsilon & (ext{when } X_1=1) \ 2+\epsilon & (ext{when } X_1=2) \end{array}
ight.$$

We can see that:

- As X_1 gets bigger, Y^* gets bigger ($Y^* = \alpha + \beta_1 X_1 + \epsilon$)
- As Y^* gets bigger, it is more likely to satisfy the condition: $Y^* > 0$, hence more likely that Y = 1

When $X_1 = 0$, about half of the cases satisfy $Y^* > 0$ Look at the area under the logistic curve (Λ)–also called cumulative distribution function (cdf)

When $X_1 = 0$, about half of the cases satisfy $Y^* > 0$ Look at the area under the logistic curve (Λ)–also called cumulative distribution function (cdf)

Example

When $X_1 = 1$ and thus $Y^* = 1 + \epsilon$

When $X_1 = 1 \ \Rightarrow \ Y^* \uparrow \ \Rightarrow \$ more cases satisfy $Y^* > 0$

.

When $X_1 = 2$ and thus $Y^* = 2 + \epsilon$

When $X_1 = 2 \ \Rightarrow \ Y^* \uparrow \ \Rightarrow \$ even more cases satisfy $Y^* > 0$

.

Random utility representation

• We can think of $Pr(Y^* > 0)$ as Pr(Y = 1)

.

Random utility representation

• We can think of $Pr(Y^* > 0)$ as Pr(Y = 1)

.

• As X_1 gets bigger Y^* gets bigger $\rightsquigarrow P$ gets bigger

Random utility representation

- We can think of $Pr(Y^* > 0)$ as Pr(Y = 1)
 - As X_1 gets bigger Y^* gets bigger $\rightsquigarrow P$ gets bigger

• When we have one threshold, it becomes a logit regression

• When we have multiple thresholds, it becomes an ordered logit regression

Let's say we are interested in roll call voting in the US congress

$$Y = \begin{cases} 0 & (\text{vote Nay}) \\ 1 & (\text{abstain}) \\ 2 & (\text{vote Yay}) \end{cases}$$

.

Let's say we are interested in roll call voting in the US congress

$$Y = \begin{cases} 0 & (\text{vote Nay}) \\ 1 & (\text{abstain}) \\ 2 & (\text{vote Yay}) \end{cases}$$

.

We can think of unobservable random utility of supporting the bill:

$$Y^* = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

Let's say we are interested in roll call voting in the US congress

$$Y = \begin{cases} 0 & (\text{vote Nay}) \\ 1 & (\text{abstain}) \\ 2 & (\text{vote Yay}) \end{cases}$$

We can think of unobservable random utility of supporting the bill:

$$Y^* = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

• As Y^* gets bigger, Pr(Y = 2) increases

Let's say we are interested in roll call voting in the US congress

$$Y = \begin{cases} 0 & (\text{vote Nay}) \\ 1 & (\text{abstain}) \\ 2 & (\text{vote Yay}) \end{cases}$$

We can think of unobservable random utility of supporting the bill:

$$Y^* = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

• As Y^* gets bigger, Pr(Y = 2) increases

• As
$$Y^*$$
 gets bigger, $\Pr(Y = 0)$ decreases

POLI803 | Week 4 11 / 31

Let's say we are interested in roll call voting in the US congress

$$Y = \begin{cases} 0 & (\text{vote Nay}) \\ 1 & (\text{abstain}) \\ 2 & (\text{vote Yay}) \end{cases}$$

We can think of unobservable random utility of supporting the bill:

$$Y^* = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

- As Y^* gets bigger, Pr(Y = 2) increases
- As Y^* gets bigger, Pr(Y = 0) decreases
- As Y* gets bigger, Pr(Y = 1) increases relative to Pr(Y = 0) but decreases relative to Pr(Y = 2)

POL1803 | Week 4 11 / 31

• Recall, with logit models we needed one threshold (0) to classify two values

.

- Recall, with logit models we needed one threshold (0) to classify two values
- When we have 3 categories, we need 2 thresholds

$$Y = \begin{cases} 0 & (\text{vote Nay}) \text{ when } Y^* \leq c_1 \\ 1 & (\text{abstain}) \text{ when } c_1 < Y^* \leq c_2 \\ 2 & (\text{vote Yay}) \text{ when } Y^* > c_2 \end{cases}$$

.

POLI803 | Week 4 13 / 31

.

POLI803 | Week 4 13 / 31

.

POLI803 | Week 4 13 / 31

Red = Pr(Y = 2), Gray = Pr(Y = 1), White = Pr(Y = 0)

.

Red = Pr(Y = 2), Gray = Pr(Y = 1), White = Pr(Y = 0)

.

Red = Pr(Y = 2), Gray = Pr(Y = 1), White = Pr(Y = 0)

.

Red = Pr(Y = 2), Gray = Pr(Y = 1), White = Pr(Y = 0)

.

Ordered logit / probit

DV = ordered categorical variable

- A lot of applications in public opinion research
 - Eur. Social Survey: people's attitude toward immigration, support for welfare spending
 - E.g. Strongly approve, somewhat approve, neutral, somewhat disapprove, strongly disapprove

- Applications in conflict research
 - No violence, repression, civil war
 - Lose, draw, win in war

Roll call voting (nay, abstain, yay)

Table 1. Ordered Logit Estimates of Approval of Vice-Presidential Candidate Selections, Post-VP Debate, by Viewership of SNL Debate Spoof (standard errors in parentheses)

	"Do you approve or disapprove of John McCain's pick of Sarah Palin as his vice-presidential running mate?" (n = 1,731)	"Do you approve or disapprove of Barack Obama's pick of Joe Biden as his vice-presidential running mate?" (n = 1,731)	
	(1 = Disapprove; 2 = Not Sure/Don't Know; 3 = Approve)		
Pre-Debate Approval	1.79** (.10)	1.86** (.10)	
Viewed SNL Debate Spoof	74** (.21)	.46* (.19)	
Party Identification (1 = strong Democrat to 5 = strong Republican)	.70** (.10)	30** (.08)	
Ideology $(1 = \text{very liberal to})$ 5 = very conservative)	.38**	23	
Overall Media Exposure	06*	.11** (.03)	
Political Knowledge	13** (.04)	.07* (.03)	
White	.19 (.20)	.16 (.17)	
Male	33* (.14)	18 (.12)	
Age	02 (.04)	.01 (.05)	
Constant 1 Constant 2	5.50 6.74	1.56 3.92	
Chi-Squared	1291.23**	757.93**	

 $p \le .05; p \le .01$ (two-tailed).

Religion and Attitudes toward Redistributive Policies among Americans

Table I. Ordered Logit and Regression Estimates for Models of Support for Redistributive Policies, 2013 Economic Values Survey (PRRI).

	Favor tax on th	Favor tax increases on the rich		Support repeal of ACA		Support increase in minimum wage		Government equality policy scale	
Variable	Ь	z	Ь	z	ь	z	ь	z	
Religion variables									
Black Protestant	0.695	1.95*	0.214	0.58	0.085	0.23	0.078	0.52	
Evangelical	0.133	0.73	0.083	0.44	0.401	2.20*	0.082	1.09	
Catholic	0.063	0.37	0.149	0.83	0.260	1.50	0.034	0.47	
Other faith	0.082	0.39	-0.179	-0.80	-0.139	-0.66	0.001	0.11	
Secular	-0.105	-0.51	-0.061	-0.28	0.102	0.49	-0.008	-0.10	
Religiosity scale	-0.104	-1.21	0.042	0.48	0.004	0.05	-0.011	-0.30	
Religious left	0.052	0.23	-0.311	-1.37	0.014	0.06	0.010	0.11	
Religious right	-0.319	-2.00*	0.286	1.68*	0.053	0.33	-0.125	-1.87*	
Both religious left and right	0.521	1.61	0.249	0.76	0.401	1.24	0.189	1.44	
Preserve traditional beliefs	-0.174	-2.05*	0.121	1.40	-0.289	-3.37***	-0.110	-3.14***	
Jesus promotes just society	0.058	1.85*	-0.086	-2.63**	0.037	1.16	0.041	3.13****	

Terris & Maoz (2005) "Rational Mediation: A Theory and a Test." JPR.

• RQ: What explains the occurrence / intensity of third-party mediation in international conflict?

Terris & Maoz (2005) "Rational Mediation: A Theory and a Test." JPR.

- RQ: What explains the occurrence / intensity of third-party mediation in international conflict?
- Some international conflicts experience more intrusive mediation, some experience less intrusive mediation, and others experience none

Terris & Maoz (2005) "Rational Mediation: A Theory and a Test." JPR.

- RQ: What explains the occurrence / intensity of third-party mediation in international conflict?
- Some international conflicts experience more intrusive mediation, some experience less intrusive mediation, and others experience none

$$Y = \begin{cases} 0 & \text{No mediation} \\ 1 & \text{Less intrusive mediation} \\ 2 & \text{More intrusive mediation} \end{cases}$$

Replication: Conflict Mediation

Theory: when the conflict is more versatile (susceptible to change), more intrusive forms of mediation become more likely

• Conflict versatility: likelihood that the underlying conflict can be converted into a cooperative game

Replication: Conflict Mediation

Theory: when the conflict is more versatile (susceptible to change), more intrusive forms of mediation become more likely

• Conflict versatility: likelihood that the underlying conflict can be converted into a cooperative game

Underlying (unobservable) random utility of mediation, Y^*

$$Y^* = \beta * \texttt{Conflict Versatility} + X\beta + \epsilon$$

$$Y = \begin{cases} 0 & \text{when } Y^* \leq cut_1 \\ 1 & \text{when } cut_1 < Y^* \leq cut_2 \\ 2 & \text{when } Y^* > cut_2 \end{cases}$$

POLI803 | Week 4 19 / 31

The data set is available online:

http://vanity.dss.ucdavis.edu/~maoz/datasets.htm

- DV (medintrus): "None" (0), "Information/Procedural" (1), "Directive" (2)
- Conflict versatility (cumversatil): $85.2 \sim 948.0$ (higher values = more versatile)
- Minimum Regime Score (minreg302): $-90 \sim 60$ (higher values = disputants are more democratic)
- Capability ratio (caprat): $1.002\sim13439.462$ (higher values = one disputant is stronger than the other)
- Alliance (ally1): dummy (1 if disputants are allied, 0 otherwise)
- Past mediation (lagprmed): 0 \sim 12 (Number of past mediated conflicts)

Fitting an ordered logit model in R

The polr function is included in the MASS package

Example: Conflict Mediation Fifth model in Table 2 (p. 579)

	Dependent variable:
Minimum Regime Score	0.007**
	(0.003)
Capability Ratio	-0.008*
	(0.005)
Alliance	1.066***
	(0.211)
Prior Mediation	0.263***
	(0.060)
Conflict Versatility	0.004***
5	(0.0004)
Observations	1 382
	1,502
Note:	*p<0.1; **p<0.05; ***p<0.01

POLI803 | Week 4

.

- A few things to note:
 - In ordered logit model, the intercept will not be estimated (assumed to be zero)
 - Instead, we estimate two cut-points. By default, the stargazer table doesn't show them
 - We can use the summary function to find the values of the cut-points


```
Coefficients:
```

	Value	Std. Error	t value
minreg302	0.007349	0.0033115	2.219
caprat	-0.008497	0.0046378	-1.832
ally1Alliance	1.065726	0.2105948	5.061
lagprmed	0.263148	0.0596802	4.409
cumversatil	0.003942	0.0003839	10.267

Intercepts:

	Value	Std. Error	t value
NonelInformation/Procedural	4.3434	0.3200	13.5723
Information/Procedural Directive	5.0789	0.3353	15.1468

```
Residual Deviance: 898.8218
AIC: 912.8218
(385 observations deleted due to missingness)
```


How the table should look

	Dependent variable:
Minimum Regime Score	0.007**
Ū	(0.003)
Capability Ratio	-0.008^{*}
	(0.005)
Alliance	1.066***
	(0.211)
Prior Mediation	0.263***
	(0.060)
Conflict Versatility	0.004***
,	(0.0004)
Cut point 1	1 313***
	(0.320)
Cut point 2	5 079***
	(0.335)
Observations	1,382
Note:	*p<0.1; **p<0.05; ***p<0.01

POLI803 | Week 4

.

So we find that Conflict Versatility has a slope of 0.004 and it's highly statistically significant

26 / 31

Example: Conflict Mediation

So we find that Conflict Versatility has a slope of 0.004 and it's highly statistically significant

- But what does that mean in terms of different ordered categories? We can't tell from the table \rightarrow need effect plots
- Recall this is the effect of Conflict Versatility on Y^* , which is NOT the quantity of interest in itself

26 / 31

Example: Conflict Mediation

So we find that Conflict Versatility has a slope of 0.004 and it's highly statistically significant

- But what does that mean in terms of different ordered categories? We can't tell from the table \rightarrow need effect plots
- Recall this is the effect of Conflict Versatility on Y^* , which is NOT the quantity of interest in itself
- We need to know whether this induces a meaningful change in Pr(Y = 2) and/or Pr(Y = 1) relative to Pr(Y = 0)

So we find that Conflict Versatility has a slope of 0.004 and it's highly statistically significant

- But what does that mean in terms of different ordered categories? We can't tell from the table \rightarrow need effect plots
- Recall this is the effect of Conflict Versatility on Y^* , which is NOT the quantity of interest in itself
- We need to know whether this induces a meaningful change in Pr(Y = 2) and/or Pr(Y = 1) relative to Pr(Y = 0)
- Recall also that the effects of Conflict Versatility on probabilities depend on the values of other independent variables
 - We usually set the values at their mean or median value
 - We should try setting them at other "interesting" values

POLI803 | Week 4 26 / 31

cumversatil effect plot

POLI803 | Week 4 27 / 31

• Interpret the areas under the curves

POLI803 | Week 4 28 / 31

Effect Plot

POLI803 | Week 4 29 / 31


```
> eff.cv
cumversatil effect (probability) for None
cumversatil
      200
                400
                          600
                                     800
0.9783138 0.9535049 0.9031250 0.8090859
cumversatil effect (probability) for Information/Procedural
cumversatil
       200
                  400
                             600
                                         800
0.01117349 0.02365755 0.04797716 0.08931031
cumversatil effect (probability) for Directive
cumversatil
       200
                  400
                             600
                                         800
0.01051269 0.02283757 0.04889785 0.10160382
>
```

POLI803 | Week 4 30 / 31

Summary

- $\bullet\,$ When DV is an ordered categorical \Rightarrow ordered logit model
 - Roll call voting (nay, abstain, yay)
 - Levels of support for a certain policy (survey research)
 - Military victory (lose, draw, win)

• After estimating the model, we need to investigate the substantive effects of our main independent variable using the effect function

Summary

- $\bullet\,$ When DV is an ordered categorical \Rightarrow ordered logit model
 - Roll call voting (nay, abstain, yay)
 - Levels of support for a certain policy (survey research)
 - Military victory (lose, draw, win)

• After estimating the model, we need to investigate the substantive effects of our main independent variable using the effect function

• In doing so, try setting the values of the other independent variables at interesting values, and see how the effects of the main IV change