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The Idea of Matching
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Estimators

• Now we will explore estimators that for lack of a better word “use
covariates” to estimate aggregate causal parameters

• A few topics: subclassification, exact matching, inexact/approximate
matching
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Roadmap

1. Subclassification

2. Exact Matching

3. Inexact Matching
Nearest Neighbor Covariate Matching
Propensity scores

p-score matching
IPW
Coarsened Exact Matching (CEM)
Coarsened Exact Matching (CEM)
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Subclassification method

• Subclassification: an early effort to tackle covariates, but which
ultimately cannot handle large features due to common support
issues

→ no one uses it. shown for pedagogical purpose
• The Titanic example in the book:
• Titanic sank
• 2200 on board, but only 700 survived
• Women and children first was a maritime rule to ration lifeboats, but

there were different cabins (1st class, 2nd class, etc.) on different
levels with different proximity to boats

• Q: What was the causal effect of 1st class on survival after adjusting
for W and C?

• Can you draw a DAG (Directed Ayclic graph)?
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Exercise: Titanic DAG

Figure: Women W and children C first maritime rule is a confounder for
estimating first class D effect on surviving Y

D

C

W

Y

Backdoor criterion can be satisfied by blocking on W and C . These are
our known confounders. Now we just need data to see if it’s quantified.
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Titanic exercise

1. Stratify the confounders: Our age and sex variables are both binary,
so we can only create four strata: male children, female children,
male adults, female adults → to ”control” the covariates

2. Calculate differences within strata: Calculate average survival rates
for each group within each of the four strata and difference within
strata

3. Calculate probability weights: Count the number of people in each
strata and divide by the total number of souls aboard (crew and
passengers)

4. Aggregate differences across strata using weights: Estimate the
ATE by aggregating the difference in survival rates over the four
strata with each strata-specific difference weighted by that strata’s
weight
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Table 1: Stratified sample

Table: Counts and Titanic survival rates by strata and first class status.

First class All other classes
Strata Obs Mean Obs Mean Total

Male adult 175 0.326 1,492 0.188 1,667
Female adult 144 0.972 281 0.626 425
Male child 5 1 59 0.407 64
Female child 1 1 44 0.613 45

Total observations 325 1,876 2,201
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Table 2: Estimates of aggregate parameters

Strata Differences in Survival Rates Weightk,ATE Weightk,ATT Weightk,ATU

Male adult 0.137 0.76 0.54 0.80
Female adult 0.346 0.19 0.44 0.15
Male child 0.593 0.03 0.02 0.03
Female child 0.387 0.02 0.00 0.02

No stratification Stratification weighted estimates
ŜDO ÂTE ÂTT ÂTU

Estimated coefficient 0.35 0.20 0.24 0.19

2. Diff in survival rates?

0.326-0.188 = 0.137
3. Prob weights for ATE? 1667 (treat+control)/2201 (all) = 0.76
3. Prob weights for ATT? 175 (treat)/325 (total in treat)= 0.54
3. Prob weights for ATU? 1492 (control)/1876 (total in treat)= 0.80

δ̂ATT = (0.137× 0.54) + (0.346× 0.44) + (0.593× 0.02) + (0.387× 0.00)

= 0.24 or 24 percentage points
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ŜDO ÂTE ÂTT ÂTU

Estimated coefficient 0.35 0.20 0.24 0.19

2. Diff in survival rates? 0.326-0.188 = 0.137

3. Prob weights for ATE? 1667 (treat+control)/2201 (all) = 0.76
3. Prob weights for ATT? 175 (treat)/325 (total in treat)= 0.54
3. Prob weights for ATU? 1492 (control)/1876 (total in treat)= 0.80

δ̂ATT = (0.137× 0.54) + (0.346× 0.44) + (0.593× 0.02) + (0.387× 0.00)

= 0.24 or 24 percentage points

9/58



Table 2: Estimates of aggregate parameters

Strata Differences in Survival Rates Weightk,ATE Weightk,ATT Weightk,ATU

Male adult 0.137 0.76 0.54 0.80
Female adult 0.346 0.19 0.44 0.15
Male child 0.593 0.03 0.02 0.03
Female child 0.387 0.02 0.00 0.02

No stratification Stratification weighted estimates
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What if we drop the only female child in the 1st class
(due to false data) ?

Table: Differences in survival rates, stratification weights, and estimates of
parameters without perfect stratification

Strata Differences in Survival Rates Weightk,ATE Weightk,ATT Weightk,ATU

Male adult 0.137 0.76 0.54 0.80
Female adult 0.346 0.19 0.44 0.15
Male child 0.593 0.03 0.02 0.03
Female child n/a n/a n/a 0.02

No stratification Stratification weighted estimates
ŜDO ÂTE ÂTT ÂTU

Estimated coefficient 0.35 n/a 0.24 n/a

Differences in survival rates, stratification weights, and estimated parameters. All coefficients should be multiplied by 100
to get a percentage point change in survival rate as a result of having a first class cabin. Note that the SDO is a simple
difference in mean outcomes and therefore not a weighted average over the strata differences. But the estimated ATE,
ATT and ATU parameters are weighted averages in difference in means using corresponding stratification weights.
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Lack of Common Support (Empty cells)

• Stratification requires having units in both groups for every value of
X to get ATE

• If you want the ATT, you have to have units in the control group for
every treated group based on its value of X (female children weren’t
treated after n/a, so didn’t matter)

• If you want the ATU, you have to have units in the treatment group
for every treated group based on its value of X (female children
weren’t treated, so it ”did” matter)

• This has a technical word we are going to learn more about called a
“lack of common support” (missings obs)
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No overlap (common support violation)

No support is like an incomplete bridge which stops you from even
being able to cross the moat even though the troops exist (i.e.,
unconfoundedness)
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Curse of Dimensionality

• Dimensionality (k) usually means number of covariates. Imagine the
problem here?

• Stratification methods break down in finite samples because as
increase the number of covariates, the ”dimension” grows even faster

• Assume we have k covariates and we divide each into 3 coarse
categories (e.g., age: young, middle age, old; income: low, medium,
high, etc.)

• The number of strata is 3k. For k = 10, then it’s 310 = 59, 049

• The curse of dimensionality is based on the slices of all interactions
of the covariates, not just the covariates, and that explodes fast →
we need a better method to create strata
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Roadmap

1. Subclassification

2. Exact Matching

3. Inexact Matching
Nearest Neighbor Covariate Matching
Propensity scores
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IPW
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Exact matching
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Exact Matching

• Subclassification: uses the difference between treatment and
control group units and achieves covariate balance by using the k
probability weights to weight the averages

→ failed quickly when k goes large and many missing matches
(common support failed)
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The Training example: Age and Earnings

• How do we create matches/counterfactuals with the treated group?
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Exact matching

• Exact matching finds a person in the control group whose value of
Xj is exactly equal to each person in the treatment group i

• Will not work if the conditioning set includes a continuous variable
• Will also not work if K gets large (curse of dimensionality we

discuss later)
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The Training Example

• Take average with multiple exact matches ( 1
M )

19/58



ATT estimator: One match

We will focus on the ATT for the rest of today and the equation is:

δ̂ATT =
1

NT

∑
Di=1

(Yi − Yj(i)) (1)

where Yj(i) is the jth unit matched to the ith unit based on the jth being
“exactly equal to” the ith unit with respect to the X conditioning set
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Multiple matches

Multiple matches: What if I find two or more M units with the identical
X value? Then what?

δ̂ATT =
1

NT

∑
Di=1

(
Yi −

[
1

M

M∑
m=1

Yjm(1)

])
(2)

Notice that we are only dealing with Y 0
i (control) by matching; The Y 1

i

(treatment) is fine as is.
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Matching algorithm

1. For each unit i in the treatment group with known and quantified
confounder X = xi, find all units j in the donor pool for whom
xi = xj . These j units are our M matches and M can be one or it
can be greater than one if you want it to be.

2. For each unit i, replace its missing potential outcome, Y 0
i , with the

matched j units’ realized outcomes, 1
M

∑
Yj(i), from Step 1. Do this

for all i units in the treatment group.
3. For each unit i, calculate the difference between realized earnings

and matched earnings, δ̂i = Yi − 1
M

∑
Yj(i).

4. Finally, estimate the sample ATT by averaging over all i differences in
earnings from Step 3 as 1

NT

∑
δ̂i, where NT is the number of

treatment units.
5. Easy peasy!
6. What problem we would encounter here?
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Inexact matching
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Nearest Neighbor Covariate Matching (NN Matching)

• What if you couldn’t find another unit with that exact same value of
X?

→ Then you do approximate matching
• Estimate δ̂ATT by imputing the missing potential outcome of each

treatment unit i using the observed outcome from that outcome’s
“nearest” neighbor j in the control set using X for the matching

δ̂ATT =
1

NT

∑
Di=1

(Yi − Yj(i))

where Yj(i) is the observed outcome of a control unit such that Xj(i)

is the closest value to Xi among all of the control observations (eg
match on X)
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Matching

• We could also use the average observed outcome over M closest
matches:

δ̂ATT =
1

NT

∑
Di=1

(
Yi −

[
1

M

M∑
m=1

Yjm(1)

])

• Works well when we can find good matches for each treatment
group unit, so M is usually defined to be small (i.e., M = 1 or M = 2)
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Example: Matching example with single covariate

i Y 1
i Y 0

i Di Xi

1 6 ? 1 3
2 1 ? 1 1
3 0 ? 1 10
4 0 0 2
5 9 0 3
6 1 0 -2
7 1 0 -4

Question: What is δ̂ATT =
1

NT

∑
Di=1

(Yi − Yj(i))?
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Measuring the matching discrepancy

• What does it mean to be close when I am working with a large
number of covariates k > 1?

• Need a way of measuring a match in terms of how “close” each
unit’s Xi value was to the matched Xj

→ Let’s do that and use the square root of the sum of all squared
differences in each unit’s Xi −Xj(i) as a measure of how bad the
match is
→ This is called the Euclidean distance
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Euclidean distance

Definition: Euclidean distance

||Xi −Xj || =
√

(Xi −Xj)′(Xi −Xj)

=

√√√√ k∑
n=1

(Xni −Xnj)2
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Minimizing the Euclidean distance

• Abadie and Imbens (2006) show that there exists a unique solution
to the matching problem that minimizes a given distance metric

• Matching in R and teffects in Stata (not sure in python)
• But the idea here is that any other match will always have a higher

Euclidean distance
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Other distance metrics

• Our example treated a one unit difference in age and one unit
difference in GPA as the same, but those scales are different and
matter a lot

• The Euclidean distance is not invariant to changes in the scale of the
X ’s.

• Alternative distance metrics that are invariant to changes in scale are
more commonly used

• Normalized Euclidean distance and Mahalanobis distance both try to
normalize it so that scale doesn’t matter
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Normalized Euclidean distance

Definition: Normalized Euclidean distance

A commonly used distance is the normalized Euclidean distance:

||Xi −Xj ||=
√
(Xi −Xj)′V̂ −1(Xi −Xj)

where
V̂ −1 = diag(σ̂2

1, σ̂
2
2, . . . , σ̂

2
k)
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Normalized Euclidean distance

• Notice that the normalized Euclidean distance is equal to:

||Xi −Xj ||=

√√√√ k∑
n=1

(Xni −Xnj)2

σ̂2
n

• Thus, if there are changes in the scale of Xni, these changes also
affect σ̂2

n, and the normalized Euclidean distance does not change
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Mahalanobis distance

Definition: Mahalanobis distance

The Mahalanobis distance is the scale-invariant distance metric:

||Xi −Xj ||=
√
(Xi −Xj)′Σ̂

−1
X (Xi −Xj)

where Σ̂X is the sample variance-covariance matrix of X .
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Matching and the Curse of Dimensionality

• Common support and the dimensality curse: The larger the
dimensions of the conditioning set, the less likely common support
holds, and you can’t not do it because you need these covariate
dimensions to satisfy weak unconfoundedness!

• This problem is caused by the finite dataset, and it introduces a
particular type of selection bias

• Curses are only overcome with new spells! → Abadie and Imbens
(2011) derived a way to reduce the bias (bias adjustment or bias
correction) → in the matchIt package

36/58



Matching and the Curse of Dimensionality

• Common support and the dimensality curse: The larger the
dimensions of the conditioning set, the less likely common support
holds, and you can’t not do it because you need these covariate
dimensions to satisfy weak unconfoundedness!

• This problem is caused by the finite dataset, and it introduces a
particular type of selection bias

• Curses are only overcome with new spells!

→ Abadie and Imbens
(2011) derived a way to reduce the bias (bias adjustment or bias
correction) → in the matchIt package

36/58



Matching and the Curse of Dimensionality

• Common support and the dimensality curse: The larger the
dimensions of the conditioning set, the less likely common support
holds, and you can’t not do it because you need these covariate
dimensions to satisfy weak unconfoundedness!

• This problem is caused by the finite dataset, and it introduces a
particular type of selection bias

• Curses are only overcome with new spells! → Abadie and Imbens
(2011) derived a way to reduce the bias (bias adjustment or bias
correction) → in the matchIt package

36/58



Curse of dimensionality, bias and heterogeneous
treatment effects

• Recall the problem of many covariates for exact matching – the
curse of dimensionality makes matching on K covariates
implausible as the dimensions grow exponentially with K

• This is problem because recall there are two assumptions needed to
match

1. Unconfoundedness: this gives you the right to match
2. Common support: this gives you the ability to match

• Without both, then depending on the amount of hetergeneity in the
treatment effects, matching will be biased

→ We introduce a different technique to address this curse of
dimension
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Propensity score as dimension reduction

• Rubin (1977) and Rosenbaum and Rubin (1983) developed the
propensity score method

• Propensity score theorum: They show that if treatment is
independent of potential outcomes conditional on K covariates,
then it will be independent of potential outcomes conditional on
propensity score

• Main value of the propensity score is dimension reduction to reduce
K covariates into a single scalar without loss of information

• Variety of ways to incorporate the propensity score – stratification,
weighting and matching. We focus on propensity score matching
here.
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Caveat: Propensity score matching

• King and Nielson (2019) “Why propensity scores should not be used
for matching”

• “The more balanced the data (or the more balanced it comes by
trimming some of the observations through matching), the more
likely propensity score matching will degrade inferences.”

• → caution against assuming that more balance always improves
causal inference

• Reduced sample size
• Bias from exclusion of extreme values
• Overfitting to the matched sample
• The author thinks its fine. I see less work on p-score matching these

days
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Propensity score matching: three core steps

1. Takes necessary covariates

2. Estimates a maximum likelihood model of the conditional probability
of treatment (usually a logit or probit so as to ensure that the fitted
values are bounded between 0 and 1),

3. Uses the predicted values from that estimation to collapse those
covariates into a single scalar called the propensity score. All
comparisons between the treatment and control group are then
based on that value (propensity).
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Investigating overlap

• Once you obtain the propensity score, you can use it for estimation,
but you can also use it for evaluating covariate balance

• It’s an easy way to do it with histograms, and since the propensity
score theorem holds for the dimensions of X , there’s no loss of
generality in investigating overlap that way versus one by one

• Remember: you need common support, not on X individual
covariates alone, but within the K dimensions, so investigating with
the propensity score is easier to do
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Covariate 1 histograms: Age
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Covariate 2 histograms: GPA
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Summarizing both with propensity score histogram
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Navigating the vastness of estimation

• Estimators abound and can be a little bewildering so to summarize
them:

1. Match units from one group to another using the propensity score
(with various rules for finding how close to be)

2. Weighting by the inverse propensity score

• Variety of techniques to derive standard errors from parametric
methods to bootstrapping

• Can even introduce “doubly robust” methods to deal with matching
bias like we did with nearest neighbor bias correction

• But all these estimators assume unconfoundedness, so really it’s all
about addressing the lack of overlap; that’s the only bias that exists
when you have unconfoundedness
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Step 1: Pick your parameter ATE vs ATT vs ATU

• Which population are you studying? Only those who were
discriminated against? That’s the ATT

• Do you want to imagine “what if blacks and whites were both
discriminated against?” That’s the ATE

• The more you can focus on one particular causal parameter, the
easier and more justified it gets as it weakens both assumptions
(unconfoundedness and common support)
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Step 2: Estimate the propensity score

• Estimate the conditional probability of treatment using probit or logit
model (or ML)

Pr(Di = 1|Xi) = F (βXi)

• Note: don’t use OLS because while it will get the mean right, it will
not get correct values in the tails because of its linear projections

• OLS will give propensity scores outside the [0,1] bounds and
probabilities cannot be negative or greater then one
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Step 2: Estimate the propensity score

• Use the estimated coefficients to predict the propensity score for
each unit i

ρ̂i(Xi) = β̂Xi

• Note that each unit i now has a predicted probability of treatment
given the values of their covariates relative to everyone else’s

48/58



Step 2: Estimate the propensity score

• Think of the propensity score as a frequentist concept of probability
• “If I drew someone from the sample with these characteristics, then

how many of those are in the treatment group divided by the total
with those characteristics”

• Or for each dimension of X , a ratio of NT
(NT+NC)
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Step 3a: Propensity Score Estimation with matching

• Most common method is to use matching (propensity score
matching or matching on propensity scores)

• Matching finds a unit in the comparison group with a similar ρ̂i(X)

to service as counterfactual for the unit

• For the ATE, you’ll need matches on both side; for the ATT, you’ll
need matches for the treatment group among controls

• Lack of overlap creates issues for matching which we’ll note later
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Step 3b: Propensity Score Estimation with stratification

• Rare to see this done anymore, though it was one of the methods
that Dehejia and Wahba (2002) tried

• Stratification is a kind of weighting method similar to Cochran’s
subclassification method where weights are group shares within
certain ranges of the propensity score
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Step 3c: Early weighting methods

• Called Weighting on the propensity score.

• Most common is the inverse probability weighting (IPW)
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Step 3c: Estimation with inverse probability weighting

• IPW uses the estimated propensity score to reweight the outcomes
for which there are several historical methods for doing so

• IPW is non-parametric – you are just taking averages and multiplying
by the inverse of the propensity score weights depending on which
parameter you want to estimate

• There are fewer implementation choices than in matching (i.e., no
choice over distance, number of neighbors)

• There are bias adjustment methods called double robust where you
combine imputing counterfactuals with weighting by the propensity
score
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Step 3d: Coarsened Exact Matching

• Also called weighting on the propensity score
• Iacus et al. (2012) introducted it
• Very simple idea: it’s possible to do exact matching once we coarsen

the data enough.
• E.g., 0- to 10-year-olds, 11- to 20-year olds, then oftentimes we can

find exact matches
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Coarsened Exact Matching: Steps

1. We begin with covariates X and make a copy called X∗.

2. Next we coarsen X∗ according to user-defined cutpoints or CEM’s
automatic binning algorithm. For instance, schooling becomes less
than high school, high school only, some college, college graduate,
post college

3. Then we create one stratum per unique observation of X∗ and place
each observation in a stratum. Assign these strata to the original
and uncoarsened data, X, and drop any observation whose stratum
doesn’t contain at least one treated and control unit.

4. Then add weights for stratum size and analyze without matching
(similar to what we did in the subclassfication example)
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Step 4: Standard Errors

Standard errors can be constructed a few different ways:
• We need to adjust the standard errors for first-step estimation of
ρ(X)

→ Parameteric first step: Newey and McFadden (1994)
→ Non-parametric first step: Newey (1994)
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Reminder: Check for common support assumption
using histograms

• Assessing whether there are units it both groups for whichever
parameter you’re focused on is simple with propensity score as
shown earlier using histograms of the propensity score for treated
and control → little overlaps mean bad matching

• Crump, et al. (2009) suggest keeping propensity scores within the
interval [0.1,0.9] (“trimming”) but any trimming will drop units and
dropping units means moving away from the parameter

• Let’s look at a picture again just to remind ourselves
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Assessing overlap

58/58


	1. Subclassification
	2. Exact Matching
	3. Inexact Matching
	Nearest Neighbor Covariate Matching
	Propensity scores


