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Limited dependent variable models

So far, we have only considered interval-level dependent variables.

Yet, there are many interesting political outcomes that are not
interval-level, for example,

voter turn out, onset of war, etc. [binary]
levels of support for legalization of marijuana [ordinal]
vote choice between Con., Lib. Dem., or Labour [nominal]
number of terrorist attacks [count]
Y > threshold (0) [censored]
percentage [0–100]

These variables are called limited dependent variables
(categorical/restricted range).

We cannot & should not use a linear model to analyze limited DV!
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Why can’t we use LM?

LM (linear regression model) is not suitable because...

straight lines from LM would be a poor representation of the X -Y
relationship when Y is a limited DV;

implausible predicted values
marginal effect forced to be constant

(quadratic / log curves cannot handle this, either)

We need Generalized linear models (GLM): a flexible
generalization that allows for outcome variables to have arbitrary
distributions or an arbitrary function of the response variable (the
link function) to vary linearly with the predictors

We will first consider the case of a binary/dummy DV.
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Scatterplot for binary/dummy DV
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Scatterplot for binary/dummy DV
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(1) Implausible predictions
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Think of Y−hat between 0 and 1
as Pr(Y=1)
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(2) Constant marginal effect of X
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Fit an S-shaped curve
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Fit an S-shaped curve

When we fit an S-shaped curve (instead of a line):

No implausible predicted values;

Predicted values can be thought of as latent probabilities
Pr(Y = 1) or P̂;

Marginal effect of X ( ∂P̂
∂X ) depends on the values of X ;

(Marginal effect of X also depends on the values of the other
covariates included in the model!).
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Fit an S-shaped curve

If we run logit regression (logistic regression, logit model), we fit a
logistic curve.

If we run probit regression (probit model), we fit a probit curve.

Logit and probit curves are very similar in shape, so you can just run
one, not both.
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Logist and Probit Curves
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Logit regression

Logit regression can be represented as:

Y ∗ = α+ β1X1 + β2X2 + β3X3 + · · ·+ βkXk

P̂ = Λ(Y ∗)

where Λ(x) = 1
1+exp(−βx) is called the link function

Y ∗ = latent utility (propensity).

Y ∗ can range between −∞ and ∞, but P̂ ranges between 0 and 1.

βm shows the marginal effect of Xm on Y ∗, but NOT the effect
of Xm on P̂ itself.

Yet, we are interested in the effect of Xm on P̂.
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Probit regression

Probit regression can be represented as:

Y ∗ = α+ β1X1 + β2X2 + β3X3 + · · ·+ βkXk

P̂ = Φ(Y ∗)

where Φ(x) = 1√
2π

∫ x
−∞ exp

(
− x2

2

)
dx

Logit regression uses the logit link function, Λ().

Probit regression uses the probit link function, Φ().
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The LPM model or Logit model?

The linear probability model (LPM) fits a linear regression model to
a binary response variable, often using OLS.

OLS supporters:

LPM is the wrong but super useful model because changes
(marginal effects) can be interpreted in the probability scale
OLS not always give nonsensical predictions
Causal inference: most causal inference techniques rely on OLS
(2SLS and DiD)

MLE supporters:

LPM is the wrong, period
If model fit and prediction accuracy are the goals, logit (and other
MLE estimators) always win
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Difference between OLS and MLE

Our old friend: Ordinary Least Squares (OLS)

OLS is a very special case of Maximum Likelihood Estimation that
happens when “errors are normally distributed”
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What to do if errors are *not* normally
distributed?

Least squares method can’t work anymore
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Our new friend: Maximum Likelihood
Estimation (MLE)
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Our new friend: Maximum Likelihood
Estimation (MLE)

MLE: maximize the likelihood of observing θ given a probability
distribution (e.g., Logit distribution)
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MLE Estimator
The logistic functional form:

θi = logit−1(xTi β) = 1

1+e
−xT

i
β

(1)

Joint probability (the product of all conditional probability) for a
Bernoulli random variable

Pr(y | θ) =
∏n

i=1 θ
yi
i (1 − θi )

1−yi (2)

Take the log-likelihood

log L(θ | y) =
n∑

i=1

[yi log θi + (1 − yi ) log(1 − θi )]

=
n∑

i=1

[
yi log

(
1

1 + e−x⊤i β

)
+ (1 − yi ) log

(
1 − 1

1 + e−x⊤i β

)]

=
n∑

i=1

[
−yi log(1 + e−x⊤i β) + (1 − yi ) log

(
e−x⊤i β

1 + e−x⊤i β

)]
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MLE Estimator

log L(θ | y) =
n∑

i=1

[yi log θi + (1 − yi ) log(1 − θi )]

=
n∑

i=1

[
yi log

(
1

1 + e−x⊤i β

)
+ (1 − yi ) log

(
1 − 1

1 + e−x⊤i β

)]

=
n∑

i=1

[
−yi log(1 + e−x⊤i β) + (1 − yi ) log

(
e−x⊤i β

1 + e−x⊤i β

)]

=
n∑

i=1

log

(
e−x⊤i β(1−yi )

1 + e−x⊤i β

)

How to estimate this θ?

Newton Raphson approximation → R will do it for you, fortunately
If you’re interested the hand derivation in math → read

Note: MLE estimation is not restricted by gaussian/normal
anymore, given that the functional form of logit distribution has
been identified by statisticians.
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MLE Estimator
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Do you remember? Bayesian estimation of θ

ξ(θ|x)︸ ︷︷ ︸
posterior dist.

∝ f (x |θ)︸ ︷︷ ︸
data/Likelihood

ξ(θ)︸︷︷︸
prior dist.

Bayes just goes a little further by multiplying the likelihood function
with a prior guess
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Estimation in R

Running a logit / probit model is quite easy in R.

fit <- glm (y ∼ x1 + x2 + x3...,
data = dataset.name,
family = binomial(link = logit))

fit <- glm (y ∼ x1 + x2 + x3...,
data = dataset.name,
family = binomial(link = probit))

What’s not quite easy is to interpret the results.
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Interpretation

In logit/probit models (or in any limited DV models) we cannot
interpret the estimated coefficients β as the marginal effect.

With LM (without interaction terms), we could: ∂Ŷ
∂X1

= β1.

With logit model, β1 merely shows the marginal effect of X1 on Y ∗,
which is not the quantity of interest.

With logit model, what we care is: ∂P̂
∂X1

, or the effect of X1 on the
probability Y = 1. (We care the P̂ )

Moreover, the marginal effect of X1 on P̂ differs depending on the
value of X1 itself as well as other X s included in the model.
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With logit model, β1 merely shows the marginal effect of X1 on Y ∗,
which is not the quantity of interest.

With logit model, what we care is: ∂P̂
∂X1

, or the effect of X1 on the
probability Y = 1. (We care the P̂ )

Moreover, the marginal effect of X1 on P̂ differs depending on the
value of X1 itself as well as other X s included in the model.
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What to do after estimation

Three Steps
1 Produce a regression table using stargazer.

Identify the “best” model(s)

2 Discuss statistical significance and the sign (but not the size) of
coefficients.

3 Graphically illustrate the size of the marginal effects (and discuss
them in the text).

Do this for “interesting” and/or “representative” cases in your
covariates
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How to illustrate the marginal effect of X

P̂ = Λ(α+ β1X1 + β2X2 + β3X3 + · · ·+ βkXk)

1 Choose one X to focus on. Let’s say we are interested in X1.

2 Set the values of all the other X s at their “interesting” and/or
“representative” values (mean, median, minimum, maximum, etc.).

3 Effect plot: Graphically and numerically show the relationship
between X1 and P̂ using the effect function.
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Example: Titanic passenger survival

survived: 1 (survived) or 0 (not survived)

pclass: passenger class (first, second, third)

child: Adult or Child (under 16 yo)

old: 1 (50+ yo) or 0
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Example: Titanic passenger survival

sibsp: number of siblings aboard

parch: number of parents / children aboard

fare: Passenger fare (in Pre-1970 British Pounds)

cherbourg, queenstown, southampton: Embarked at ...
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Example: Titanic passenger survival

Let’s say we are interested in the following two:

the effect of fare on survival (i.e., does paying more increase the
chance of survival?)

the effect of child and female dummies on survival (i.e., was
“women and children first” policy implemented?)
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Model fit
Log likelihood

Always negative (log of “likelihood” = a number between 0 and 1)

sort of like R2 (but not really; it doesn’t have intuitive
interpretation)

the larger (smaller in absolute values), the better

Akaike’s Information Criterion (AIC)

AIC = −2(L− k), where L is the log likelihood and k is the number
of coefficients

sort of like adjusted R2 (penalizes models with lots of X s)

the smaller, the better

Not comparable if n is different
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Interpretation

1 Regression table

Model (4) is fits the data better based on AICs

2 Fare, child dummy, and female dummy are all positive and
significant, as expected

In order to see if the effect of independent variables are also
substantively significant, we need to obtain marginal effect.
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Interpretation: marginal effect

P̂ = Λ(−1.722 + 0.009 ∗ fare + 0.675 ∗ child + 2.362 ∗ female)

Let’s first calculate and plot the effect of fare on survival.

To see the relationship between fare and P̂, we calculate P̂ for
several different values of fare, holding constant other variables at
some values.

The effect function: effect(term = "fare", mod = fit.4) sets
everything else constant at its mean value.
But, mean does not make sense for child / female.

We should do this for the following four cases:

Child, Male
Child, Female
Adult, Male
Adult, Female

33 / 44
POLI803 | Week 3

▲



Limited DVs Logit/Probit The LPM Debate MLE Estimation Example

Interpretation: marginal effect
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Interpretation: marginal effect

34 / 44
POLI803 | Week 3

▲



Limited DVs Logit/Probit The LPM Debate MLE Estimation Example

Effect of fare on survival (child, male)
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Effect of fare on survival (child, female)
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Effect of fare on survival (adult, male)
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Effect of fare on survival (adult, female)
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Effect of fare on survival (child, male)
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Interpretation: marginal effect
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Interpretation: marginal effect
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Interpretation: marginal effect (gender)

Effect of gender on survival (child)
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Interpretation: marginal effect
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Interpretation: marginal effect (age)

Effect of age on survival (female)
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Interpretation: marginal effect (fare)
Effect of fare on survival (child, male)
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Summary
Some relationships can only be found by calculating and plotting
the marginal effects:

Passenger’s gender has a significant impact on survival probability.
For “average” adult passengers (because we held fare at the mean),
probability of survival increases from 17% to 69% (= 17% of
average adult male passengers survived, whereas 69% of average
adult female passengers survived). → p.31

Passenger’s age does have an impact on survival probability, but the
effect is much smaller compared with the effect of gender.

For “average” male passengers, probability of survival increases from
17% to 29% if he is a child (= 17% of average adult male
passengers survived, whereas 29% of average child male passengers
survived). → p.33
For “average” female passenger, probability of survival increases
from 69% to 81% if she is a child (= 69% of average adult female
passengers survived, whereas 81% of average child female
passengers survived).
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Summary

Even though we did not include an interaction term, the effect of
one variable depends on the values of all the other independent
variables.

Passenger’s fare influences the probability of survival, but its effect
is much bigger for male passengers.

For male child, the probability of survival increases from 26% to
70% when we increase the fare from 0 to 200 GBP (= 44
percentage points increase). → p.34
For female child, the probability of survival increases from 79% to
96% when we increase the fare from 0 to 200 GBP (= 23
percentage points increase).
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