## Week 5: Duration Analysis and BTSCS Models POLI803

#### Howard Liu

Fall 2025

University of South Carolina

#### **Outline**

- Model 1: Duration/survival analysis
  - Key terminology
  - Data structure

- Model 2: Binary-Time-Series-Cross-Sectional analysis
  - = how to do duration analysis with a logit model

## **Duration analysis**

Duration analysis (econ) = survival analysis (health science) = event history analysis (stats)

Types of questions we ask:

- Logit analysis (DV = binary):
  - DV = event occurring or not occurring
  - Does X make it more likely for an event to occur?
- Duration analysis (DV = time):
  - DV = time until event occurring (e.g., war, arrest)
  - Does X prolong the duration of time until the unit experiences the event?

## Failure time process

### Duration data are generated by a failure time process:

- Units: individuals, governments, countries
- Units are initially in some state: healthy, democracy, at peace
- At any given point in time, units are "at risk" of experiencing some event (failure):
  - individual die
  - governments may become autocratic
  - countries go to war
- Event (failure) = transition from one state to another state

## Failure time process

If a unit experiences an event (failure), then we observe the duration until the event

- DV (survival time; failure time) = duration until the event
- = how long a unit survives until it experiences a failure event
- Time units can be measured in years, months, days, hours, seconds, etc.

## Failure time process

• But some units may not experience an event of interest

Concepts

• Some countries may never go to war (survive forever)

## Failure time process

But some units may not experience an event of interest

Concepts

- Some countries may never go to war (survive forever)
- People will die eventually, but they may not die before the end of the observation period

## Failure time process

- But some units may not experience an event of interest
  - Some countries may never go to war (survive forever)
  - People will die eventually, but they may not die before the end of the observation period
  - People will die eventually, but they may die for other reasons

## Failure time process

- But some units may not experience an event of interest
  - Some countries may never go to war (survive forever)
  - People will die eventually, but they may not die before the end of the observation period
  - People will die eventually, but they may die for other reasons
    - Let's say the failure event of interest is "die from a lung cancer"
    - When a person is killed in a traffic accident, s/he will not die from a lung cancer

## Failure time process

- But some units may not experience an event of interest
  - Some countries may never go to war (survive forever)
  - People will die eventually, but they may not die before the end of the observation period
  - People will die eventually, but they may die for other reasons
    - Let's say the failure event of interest is "die from a lung cancer"
    - When a person is killed in a traffic accident, s/he will not die from a lung cancer
- When a unit does not experience a failure event, then we cannot observe the full duration until the event
  - We call these units "censored" observations
  - Censored units are still informative, as we can still partially observe the duration of survival

## **Examples of duration data**

#### Duration of democratic regimes

- Unit: democratic country
- Unit of time: year
- Initial state: democracy
- Failure event: Autocratic reversal (breakdown of democracy)
- If democracy never fails in a country, that country is censored
- Censoring indicator: 1 if eventually failed, 0 if censored
- DV = duration until democracy fails, or duration until the end of observation period (1700–2001)

## Examples of duration data: Failed Democracy

| Country       | Begin | End  | Time | Failed? |
|---------------|-------|------|------|---------|
| Grenada       | 1974  | 1979 | 6    | Yes     |
| Cuba          | 1909  | 1925 | 17   | Yes     |
| Cuba          | 1940  | 1952 | 13   | Yes     |
| United States | 1789  | 2001 | 213  | No      |
| Canada        | 1867  | 2001 | 135  | No      |
| <u>:</u>      | :     | :    | :    | :       |

- Democracy broke down in Grenada (in 1979) and in Cuba (in 1925 and again in 1952)
- Observations are censored for US and Canada (never failed)

## Examples of duration data: Peace Duration

#### **Duration of peace**

- Unit: country
- Unit of time: year
- Initial state: peace
- "Failure" event: war onset
- DV = duration of peace / survival of peace
- If war never happens in a country by the end of the observation period, that country is censored

## Examples of duration data: Transition of Power

#### **Duration of cabinet**

- Unit: cabinet in parliamentary democracies
- Initial state: in power
- Failure event: dissolution or election
- If a cabinet has not failed by the end of the observation period, the cabinet is censored
- Time = duration until cabinet ends due to dissolution or election, or duration until the end of observation period

## Why not linear regression?

Although duration is an interval-level (continuous) variable, running linear regression is not appropriate

- Negative predicted values don't make sense
- Censoring
- Temporal dependencies in the DV

## Models for duration analysis 1

Continuous-time duration models (survival models; event-history models)

- Parametric: Exponential, Weibull, Log-logistic, Log-normal, Generalized Gamma, etc.
  - makes big assumptions on the data generating processes
  - efficient: when the assumptions are correct, parametric models can estimate parameters very precisely

## Models for duration analysis 1

Continuous-time duration models (survival models; event-history models)

- Parametric: Exponential, Weibull, Log-logistic, Log-normal, Generalized Gamma, etc.
  - makes big assumptions on the data generating processes
  - efficient: when the assumptions are correct, parametric models can estimate parameters very precisely
- Semi-parametric: **Cox model** 
  - makes no assumptions on the data generating processes (no dist. assumed)
  - makes a specific parametric assumption about the hazard ratios of different explanatory variables
  - non-parametric part: does not assume any particular parametric form for the baseline hazard function over time
  - flexible

Concepts Examples Duration models BTSCS approach

## Models for duration analysis 1

Continuous-time duration models (survival models; event-history models)

- Parametric: Exponential, Weibull, Log-logistic, Log-normal, Generalized Gamma, etc.
  - makes big assumptions on the data generating processes
  - efficient: when the assumptions are correct, parametric models can estimate parameters very precisely
- Semi-parametric: Cox model
  - makes no assumptions on the data generating processes (no dist. assumed)
  - makes a specific parametric assumption about the hazard ratios of different explanatory variables
  - non-parametric part: does not assume any particular parametric form for the baseline hazard function over time
  - flexible
- Survival analysis can be a standalone course
- We will only see how to interpret the results (but not how to estimate them)

## Models for duration analysis 1

Three ways to report the estimated results (usually made explicit in a table footnote)

- If results are reported in AFT (Accelerated Failure Time) metric: positive coefficients → longer duration
- If results are reported in "Hazard Rate": positive coefficients → greater risk → shorter duration
- If results are reported in "Hazard Ratio": coefficients are all positive.
   Coefficients greater than 1 → greater risk → shorter duration

## Chiba et al. (2015): AFT

Table 3 Competing risks analysis of government survival: models without selection versus models with selection

| Explanatory variables                    | Replacement          | terminations      | Dissolution terminations |                   |
|------------------------------------------|----------------------|-------------------|--------------------------|-------------------|
| Explanatory variables                    | Without<br>selection | With<br>selection | Without<br>selection     | With<br>selection |
| Minority government                      | -0.271***            | -0.201**          | -0.362***                | -0.325**          |
|                                          | (0.091)              | (0.091)           | (0.137)                  | (0.139)           |
| Ideological divisions in coalition       | -0.005***            | -0.002            | 0.003                    | 0.005             |
|                                          | (0.002)              | (0.002)           | (0.004)                  | (0.004)           |
| Returnability                            | -0.201**             | -0.359***         | -0.015                   | -0.078            |
| •                                        | (0.100)              | (0.111)           | (0.140)                  | (0.150)           |
| Effective number of legislative parties  | -0.063**             | -0.006            | 0.074                    | 0.107             |
|                                          | (0.031)              | (0.035)           | (0.058)                  | (0.067)           |
| Polarization index                       | -0.032*              | -0.022            | -0.066**                 | -0.064**          |
|                                          | (0.020)              | (0.020)           | (0.027)                  | (0.028)           |
| Time remaining in CIEP (Logged)          | 0.894***             | 0.895***          | 0.752***                 | 0.753***          |
|                                          | (0.065)              | (0.066)           | (0.117)                  | (0.151)           |
| Intercept                                | 1.304***             | 1.334***          | 2.058**                  | 2.018*            |
| *                                        | (0.494)              | (0.505)           | (0.891)                  | (1.155)           |
| Duration dependence (Logged)             | 0.540***             | 0.683***          | 0.488***                 | 0.543***          |
| 1 ( 50 )                                 | (0.057)              | (0.060)           | (0.082)                  | (0.092)           |
| Error correlation $(\tanh^{-1}(\theta))$ |                      | 0.310***          |                          | 0.112             |
| ( )                                      |                      | (0.073)           |                          | (0.093)           |
| Log-likelihood                           | -2655.72             | -2646.22          | -1803.16                 | -1802.42          |

#### Meaning?

Concepts Examples (Duration models) BTSCS approach

## Chiba et al. (2015): AFT

Table 3 Competing risks analysis of government survival: models without selection versus models with selection

| Explanatory variables                    | Replacement          | terminations      | Dissolution terminations |                   |
|------------------------------------------|----------------------|-------------------|--------------------------|-------------------|
| Explanatory variables                    | Without<br>selection | With<br>selection | Without<br>selection     | With<br>selection |
| Minority government                      | -0.271***            | -0.201**          | -0.362***                | -0.325**          |
|                                          | (0.091)              | (0.091)           | (0.137)                  | (0.139)           |
| Ideological divisions in coalition       | -0.005***            | -0.002            | 0.003                    | 0.005             |
|                                          | (0.002)              | (0.002)           | (0.004)                  | (0.004)           |
| Returnability                            | -0.201**             | -0.359***         | -0.015                   | -0.078            |
| •                                        | (0.100)              | (0.111)           | (0.140)                  | (0.150)           |
| Effective number of legislative parties  | -0.063**             | -0.006            | 0.074                    | 0.107             |
|                                          | (0.031)              | (0.035)           | (0.058)                  | (0.067)           |
| Polarization index                       | -0.032*              | -0.022            | -0.066**                 | -0.064**          |
|                                          | (0.020)              | (0.020)           | (0.027)                  | (0.028)           |
| Time remaining in CIEP (Logged)          | 0.894***             | 0.895***          | 0.752***                 | 0.753***          |
|                                          | (0.065)              | (0.066)           | (0.117)                  | (0.151)           |
| Intercept                                | 1.304***             | 1.334***          | 2.058**                  | 2.018*            |
| *                                        | (0.494)              | (0.505)           | (0.891)                  | (1.155)           |
| Duration dependence (Logged)             | 0.540***             | 0.683***          | 0.488***                 | 0.543***          |
| 1 ( 50 )                                 | (0.057)              | (0.060)           | (0.082)                  | (0.092)           |
| Error correlation $(\tanh^{-1}(\theta))$ |                      | 0.310***          |                          | 0.112             |
| ( )                                      |                      | (0.073)           |                          | (0.093)           |
| Log-likelihood                           | -2655.72             | -2646.22          | -1803.16                 | -1802.42          |

#### Meaning? Positive coefficients → longer duration

## Gibler & Tir (2010): Hazard Rate

Table 3 Cox Regressions of State-Level
Democratization Following a Peaceful
Territorial Transfer, 1945–2000

|                         | Number of Borders    |
|-------------------------|----------------------|
|                         | Adjusted by Transfer |
| Peaceful Transfer       | 0.443(0.185)*        |
| Number of Borders       | -0.068(0.077)        |
| Nonterritorial MIDs     | -0.284(0.418)        |
| Territorial MIDs        | -0.969(0.761)        |
| Economic Development    | -0.330(0.082)**      |
| Regime Score            | 0.028(0.028)         |
| % Democracies in Region | 2.237(0.884)*        |
| (ln) Capabilities       | 0.102(0.105)         |
| N                       | 4,662                |
| Chi-square              | 29.24**              |

Note: The Peaceful Transfer variable indicates whether a state's borders have been adjusted peacefully. Cell entries report Cox coefficients and robust standard errors (in parentheses). The unit of analysis is a country-year. All independent variables are lagged with respect to the dependent variable. Observations that were already democratic prior to the transfer have been dropped. Significance levels are one-tailed: \*p < .05; \*\*p < .01.

#### Meaning?

Concepts Examples (Duration models) BTSCS approach

## Gibler & Tir (2010): Hazard Rate

TABLE 3 Cox Regressions of State-Level
Democratization Following a Peaceful
Territorial Transfer, 1945–2000

|                         | Number of Borders<br>Adjusted by Transfer |
|-------------------------|-------------------------------------------|
| Peaceful Transfer       | 0.443(0.185)*                             |
| Number of Borders       | -0.068(0.077)                             |
| Nonterritorial MIDs     | -0.284(0.418)                             |
| Territorial MIDs        | -0.969(0.761)                             |
| Economic Development    | -0.330(0.082)**                           |
| Regime Score            | 0.028(0.028)                              |
| % Democracies in Region | 2.237(0.884)*                             |
| ln) Capabilities        | 0.102(0.105)                              |
| N                       | 4,662                                     |
| Chi-square              | 29.24**                                   |
|                         |                                           |

Note: The Peaceful Transfer variable indicates whether a state's borders have been adjusted peacefully. Cell entries report Cox coefficients and robust standard errors (in parentheses). The unit of analysis is a country-year. All independent variables are lagged with respect to the dependent variable. Observations that were already democratic prior to the transfer have been dropped. Significance levels are one-tailed; \*pc. 0.05; \*\*pc. 0.1.

Meaning? Positive coefficients → greater risk → shorter duration (quicker transition to the event)

## Cunningham (2011): Hazard Ratio

TABLE 5. Hazard Ratios<sup>a</sup>

|                                 | Model 1<br>Violence | Model 2<br>Violence | Model 3<br>New Concessions | Model 4<br>New Concessions |
|---------------------------------|---------------------|---------------------|----------------------------|----------------------------|
| Unitary movement                | 0.19*               |                     | 0.39**                     |                            |
| •                               | (0.18)              |                     | (0.15)                     |                            |
| Number of SD factions (log)     | ` ,                 | 2.54**              | ` '                        | 0.97                       |
|                                 |                     | (0.78)              |                            | (0.23)                     |
| Relative size of group          | 1.06*               | 1.07*               | 1.00                       | 1.01                       |
| • .                             | (0.03)              | (0.04)              | (0.04)                     | (0.04)                     |
| Territorial base                | 0.43                | 0.39                | `0.28 <sup>*</sup> *       | `0.39 <sup>**</sup>        |
|                                 | (.31)               | (0.28)              | (0.09)                     | (0.13)                     |
| State population (log)          | 1.41*               | 1.41*               | 1.69**                     | 1.45**                     |
|                                 | (.30)               | (0.28)              | (0.35)                     | (0.26)                     |
| GDP per capita (log)            | 0.60**              | 0.62**              | 2.05**                     | 2.06*                      |
|                                 | (0.13)              | (0.15)              | (0.76)                     | (0.78)                     |
| Military expenditure per capita | 1.00**              | 1.00                | 0.999*                     | 0.999*                     |
|                                 | (0.00)              | (0.00)              | (0.00)                     | (0.00)                     |
| Number of subjects              | 87                  | 87                  | 87                         | 87                         |
| Number of failures              | 18                  | 18                  | 40                         | 40                         |
| Time at risk                    | 526                 | 526                 | 526                        | 526                        |
| Log pseudo likelihood           | -48.88              | -48.04              | -71.18                     | -72.91                     |

Note: GDP, gross domestic product.

#### Meaning?

<sup>&</sup>lt;sup>a</sup> A hazard ratio less than 1 indicates that failure is less likely at any given point in time; greater than 1 indicates failure is more likely to happen.

<sup>\*</sup> Statistically significant at the 0.10 level; \*\* statistically significant at the 0.05 level in two-tailed tests.

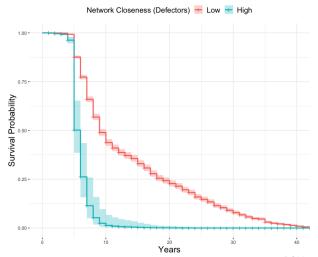
Concepts Examples (Duration models) BTSCS approach

## Cunningham (2011): Hazard Ratio

TABLE 5. Hazard Ratios<sup>a</sup>

|                                 | Model 1<br>Violence | Model 2<br>Violence | Model 3<br>New Concessions | Model 4<br>New Concessions |
|---------------------------------|---------------------|---------------------|----------------------------|----------------------------|
| Unitary movement                | 0.19*               |                     | 0.39**                     |                            |
| •                               | (0.18)              |                     | (0.15)                     |                            |
| Number of SD factions (log)     | , ,                 | 2.54**              | ` '                        | 0.97                       |
| . 0,                            |                     | (0.78)              |                            | (0.23)                     |
| Relative size of group          | 1.06*               | 1.07*               | 1.00                       | `1.01 <sup>′</sup>         |
| <b>3</b> ,                      | (0.03)              | (0.04)              | (0.04)                     | (0.04)                     |
| Territorial base                | 0.43                | 0.39                | `0.28 <sup>*</sup> *       | `0.39 <sup>*</sup> *       |
|                                 | (.31)               | (0.28)              | (0.09)                     | (0.13)                     |
| State population (log)          | 1.41*               | `1.41 <sup>*</sup>  | `1.69 <sup>*</sup> *       | `1.45 <sup>*</sup> *       |
|                                 | (.30)               | (0.28)              | (0.35)                     | (0.26)                     |
| GDP per capita (log)            | 0.60**              | 0.62**              | 2.05**                     | `2.06*                     |
|                                 | (0.13)              | (0.15)              | (0.76)                     | (0.78)                     |
| Military expenditure per capita | 1.00**              | 1.00                | 0.999*                     | 0.999*                     |
|                                 | (0.00)              | (0.00)              | (0.00)                     | (0.00)                     |
| Number of subjects              | 87                  | 87                  | 87                         | 87                         |
| Number of failures              | 18                  | 18                  | 40                         | 40                         |
| Time at risk                    | 526                 | 526                 | 526                        | 526                        |
| Log pseudo likelihood           | -48.88              | -48.04              | -71.18                     | -72.91                     |

Note: GDP, gross domestic product.


Meaning? Coefficients greater than 1 → greater risk → shorter duration (quicker transition to the event)

<sup>&</sup>lt;sup>a</sup> A hazard ratio less than 1 indicates that failure is less likely at any given point in time; greater than 1 indicates failure is more likely to happen.

<sup>\*</sup> Statistically significant at the 0.10 level; \*\* statistically significant at the 0.05 level in two-tailed tests.

# Liu (2022): Cox model. The effect of networks on remaining uncaptured (survival)

#### **Survival Curves**



Concepts Examples Duration models BTSCS approach

## Models for duration analysis 2

Discrete-time duration models, a.k.a, Binary Time-Series Cross-Section (BTSCS) models

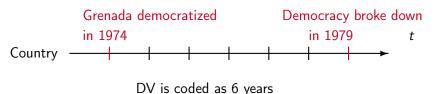
- Beck et al. (1998): BTSCS is both appropriate and equivalent to event study modeling
- Weaknes: BTSCS ignores time between events, how covariates affect that interval, and need data transformation
- The majority of research nowadays uses the Cox model
- Some empirical research still adopts this approach
- With some tricks, we can convert duration data into BTSCS data
- We apply logit / probit models to the BTSCS data

### **Duration data** ↔ **BTSCS Data**

(1) Continuous time duration data

Country

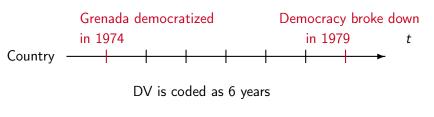
## **Duration data** ↔ **BTSCS Data**


(1) Continuous time duration data



Concepts Examples Duration models BTSCS approach

## **Duration data** ↔ **BTSCS Data**

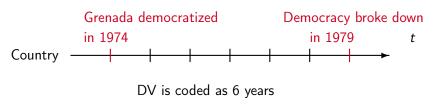

(1) Continuous time duration data



POLI803 | Week 5

#### **Duration data** ↔ **BTSCS Data**

(1) Continuous time duration data




(2) BTSCS Data (discrete time duration data)




### **Duration data** ↔ **BTSCS Data**

(1) Continuous time duration data



(2) BTSCS Data (discrete time duration data)



Concepts Examples Duration models BTSCS approach

#### Data structure

Table: Continuous time

| Country | Begin | End  | Time | Failed? |
|---------|-------|------|------|---------|
| :       | :     | :    | :    | :       |
| Grenada | 1974  | 1979 | 6    | Yes     |
| Canada  | 1867  | 2001 | 135  | No      |
| :       | :     | •    | :    | :       |

#### Data structure

Table: Continuous time

| Country | Begin | End  | Time | Failed? |
|---------|-------|------|------|---------|
| :       | :     | :    | :    | :       |
| Grenada | 1974  | 1979 | 6    | Yes     |
| Canada  | 1867  | 2001 | 135  | No      |
| :       | :     | :    | •    | :       |

#### Table: BTSCS

| Unit    | Year | Event |
|---------|------|-------|
| Grenada | 1974 | 0     |
| Grenada | 1975 | 0     |
| Grenada | 1976 | 0     |
| Grenada | 1977 | 0     |
| Grenada | 1978 | 0     |
| Grenada | 1979 | 1     |
| :       | :    | :     |
| Canada  | 1867 | 0     |
| Canada  | 1868 | 0     |
| :       | :    | :     |
| Canada  | 2000 | 0     |
| Canada  | 2001 | 0     |
| :       | :    | :     |

Concepts Examples Duration models BTSCS approach

## **BTSCS** Estimation

| Unit    | Year | Event |
|---------|------|-------|
| Grenada | 1974 | 0     |
| Grenada | 1975 | 0     |
| Grenada | 1976 | 0     |
| Grenada | 1977 | 0     |
| Grenada | 1978 | 0     |
| Grenada | 1979 | 1     |
| Canada  | 1867 | 0     |
| Canada  | 1868 | 0     |
| :       | :    | :     |
| Canada  | 2000 | 0     |
| Canada  | 2001 | 0     |

Let's say we are interested in the effect of Military (whether or not a country has a standing military forces in a given year) on democratic survival

## **BTSCS** Estimation

| Year | Y: Event                                                         | X: Military?                                                                          |
|------|------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 1974 | 0                                                                | No                                                                                    |
| 1975 | 0                                                                | No                                                                                    |
| 1976 | 0                                                                | No                                                                                    |
| 1977 | 0                                                                | No                                                                                    |
| 1978 | 0                                                                | No                                                                                    |
| 1979 | 1                                                                | No                                                                                    |
| 1867 | 0                                                                | Yes                                                                                   |
| 1868 | 0                                                                | Yes                                                                                   |
| :    | :                                                                | :                                                                                     |
| 2000 | 0                                                                | Yes                                                                                   |
| 2001 | 0                                                                | Yes                                                                                   |
|      | 1974<br>1975<br>1976<br>1977<br>1978<br>1979<br>1867<br>1868<br> | 1974 0<br>1975 0<br>1976 0<br>1977 0<br>1978 0<br>1979 1<br>1867 0<br>1868 0<br>: : : |

| Unit    | Year | Y: Event | X: Military? |
|---------|------|----------|--------------|
| Grenada | 1974 | 0        | No           |
| Grenada | 1975 | 0        | No           |
| Grenada | 1976 | 0        | No           |
| Grenada | 1977 | 0        | No           |
| Grenada | 1978 | 0        | No           |
| Grenada | 1979 | 1        | No           |
| Canada  | 1867 | 0        | Yes          |
| Canada  | 1868 | 0        | Yes          |
| :       | :    | :        | :            |
| Canada  | 2000 | 0        | Yes          |
| Canada  | 2001 | 0        | Yes          |

$$Y^* = \alpha + \beta * Military$$
  
 $\hat{P} = \Lambda(Y^*)$ 

| Unit    | Year | Y: Event | X: Military? |
|---------|------|----------|--------------|
| Grenada | 1974 | 0        | No           |
| Grenada | 1975 | 0        | No           |
| Grenada | 1976 | 0        | No           |
| Grenada | 1977 | 0        | No           |
| Grenada | 1978 | 0        | No           |
| Grenada | 1979 | 1        | No           |
| Canada  | 1867 | 0        | Yes          |
| Canada  | 1868 | 0        | Yes          |
| :       | :    | :        | :            |
| Canada  | 2000 | 0        | Yes          |
| Canada  | 2001 | 0        | Yes          |

$$Y^* = \alpha + \beta * Military$$
  
 $\hat{P} = \Lambda(Y^*)$ 

#### **BTSCS** Estimation

However, the predicted probabilities of an event may well depend on time

```
Pr (event | 1 year after democratization) may not be the same as

Pr (event | 2 years after democratization) or

Pr (event | 3 years after democratization) or

:

Pr (event | n years after democratization)
```

• What is the potential issue here?

#### **BTSCS** Estimation

However, the predicted probabilities of an event may well depend on time

```
Pr (event | 1 year after democratization) may not be the same as

Pr (event | 2 years after democratization) or

Pr (event | 3 years after democratization) or

...

Pr (event | n years after democratization)
```

ullet What is the potential issue here? o time dependence

#### **BTSCS** Estimation

However, the predicted probabilities of an event may well depend on time

```
Pr (event | 1 year after democratization) may not be the same as
Pr (event | 2 years after democratization) or
Pr (event | 3 years after democratization) or
...
Pr (event | n years after democratization)
```

- ullet What is the potential issue here? o time dependence
- The previous model imposes a structure where all of them are the same; But in fact, temporal dependency in data is obvious

## **BTSCS** Estimation

| Unit    | Year | Y: Event | X: Military? |
|---------|------|----------|--------------|
| Grenada | 1974 | 0        | No           |
| Grenada | 1975 | 0        | No           |
| Grenada | 1976 | 0        | No           |
| Grenada | 1977 | 0        | No           |
| Grenada | 1978 | 0        | No           |
| Grenada | 1979 | 1        | No           |
| Canada  | 1867 | 0        | Yes          |
| Canada  | 1868 | 0        | Yes          |
| :       | :    | :        | :            |
| Canada  | 2000 | 0        | Yes          |
| Canada  | 2001 | 0        | Yes          |

What can we do to allow  $\hat{P}$  to be different depending on time since the starting year?

| Unit    | Year | Y: Event | X: Military? | Time Counter |
|---------|------|----------|--------------|--------------|
| Grenada | 1974 | 0        | No           | 0            |
| Grenada | 1975 | 0        | No           | 1            |
| Grenada | 1976 | 0        | No           | 2            |
| Grenada | 1977 | 0        | No           | 3            |
| Grenada | 1978 | 0        | No           | 4            |
| Grenada | 1979 | 1        | No           | 5            |
| Canada  | 1867 | 0        | Yes          | 0            |
| Canada  | 1868 | 0        | Yes          | 1            |
| ÷       | :    | :        | :            | :            |
| Canada  | 2000 | 0        | Yes          | 133          |
| Canada  | 2001 | 0        | Yes          | 134          |

| Unit    | Year | Y: Event | X: Military? | Time Counter |
|---------|------|----------|--------------|--------------|
| Grenada | 1974 | 0        | No           | 0            |
| Grenada | 1975 | 0        | No           | 1            |
| Grenada | 1976 | 0        | No           | 2            |
| Grenada | 1977 | 0        | No           | 3            |
| Grenada | 1978 | 0        | No           | 4            |
| Grenada | 1979 | 1        | No           | 5            |
| Canada  | 1867 | 0        | Yes          | 0            |
| Canada  | 1868 | 0        | Yes          | 1            |
| :       | :    | :        | :            | :            |
| Canada  | 2000 | 0        | Yes          | 133          |
| Canada  | 2001 | 0        | Yes          | 134          |

$$Y^* = \alpha + \beta_1 * Military + \beta_2 * Time Counter$$
  
 $\hat{P} = \Lambda(Y^*)$ 

POLI803 | Week 5

$$Y^* = \alpha + \beta_1 * \textit{Military} + \beta_2 * \textit{Counter}$$
  
 $\hat{P} = \Lambda(Y^*)$ 

• What's the issue here?

$$Y^* = \alpha + \beta_1 * \textit{Military} + \beta_2 * \textit{Counter}$$
  
 $\hat{P} = \Lambda(Y^*)$ 

- What's the issue here?
- What does a negative / positive  $\beta_2$  imply?

$$Y^* = \alpha + \beta_1 * Military + \beta_2 * Counter$$
  
 $\hat{P} = \Lambda(Y^*)$ 

- What's the issue here?
- What does a negative / positive  $\beta_2$  imply?
- $\bullet$  One big drawback of the model above is that it assumes monotonic relationship between  $\hat{P}$  and time

The following is more flexible, as it allows for quadratic (U shape or inverse-U shape)

$$Y^* = \alpha + \beta_1 * Military + \beta_2 * Counter + \beta_3 * Counter^2$$
  
 $\hat{P} = \Lambda(Y^*)$ 

Carter & Signorino (2010) showed that cubic model is usually enough

$$Y^* = \alpha + \beta_1 * Military + \beta_2 * Counter + \beta_3 * Counter^2 + \beta_4 * Counter^3$$
  
 $\hat{P} = \Lambda(Y^*)$ 

### **BTSCS** Estimation

• The "Counter" variable sometimes called spell, t, time, or "time since last event"

• In conflict research it's often called peace years

- ullet Sometimes people use log(t+1) or  $\sqrt{t}$  instead of cubic polynomial
- Before Carter & Signorino (2010), "splines" used to be commonly used (but not any more)

# Fake data example

Let's say we have the following continuous-time data

Table: Continuous Time

| Unit | Begin | End  | Time | Failed? | X |
|------|-------|------|------|---------|---|
| Α    | 1974  | 1979 | 6    | Yes     | 1 |
| В    | 1990  | 1991 | 2    | Yes     | 0 |
| C    | 1995  | 2001 | 7    | No      | 1 |
| D    | 1992  | 2000 | 9    | Yes     | 1 |
| Ε    | 1970  | 1972 | 3    | Yes     | 0 |
| F    | 1969  | 1975 | 7    | Yes     | 0 |

We will see how to convert this into a BTSCS data set, how to estimate BTSCS models, and how to do model selection

# Fake data example: steps

- Expand the data set (i.e., create duplicates)
  To do so, we use the untable function from the reshape package
- ② Assign observation ID (a sequence of numbers from 1 to n per unit where n is the total number of observations in each unit)
- Oreate a binary DV that is equal to 1 if and only if
  - ID is equal to Time (i.e., if the observation is the last one per unit)
  - Failed is Yes (i.e., if it's not censored)
- Create a calendar variable
- 6 Create a counter variable using the btscs function from the DAMisc package

### **BTSCS** estimation

Once you obtained the BTSCS data set, try estimating at least the following logit models

- A model without any time component
- A model with the counter variable, t (linear time model)
- A model with t and  $t^2$  (quadratic polynomial model)
- A model with t,  $t^2$ , and  $t^3$  (cubic polynomial model)
- A model with log(t+1)
- A model with  $\sqrt{t}$

then choose the one that yields the smallest AIC

Do NOT choose one model over another based on the statistical significance of your favorite independent variable(s)

# Note on given.values

When using quadratic or cubic polynomials, be extra careful in calculating the substantive effects of other variables

- You should NOT set the values of t,  $t^2$ , and  $t^3$  at their mean values
- When you set t at mean(t),  $t^2$  should be set equal to mean $(t)^2$ , not mean $(t^2)$
- $(\text{mean } t)^2 \neq \text{mean of } t^2$
- This applies to variables other than time

# Note on interpretation

#### Be careful in interpreting the signs of the coefficients

- In continuous time duration models, the interpretation depends on representation
  - AFT: positive coefficient = longer duration = smaller risks
  - Hazard rate: positive coefficient = shorter duration = larger risks
  - ullet Hazard ratio: coefficient >1= shorter duration = larger risks
- In BTSCS models: positive coefficients = greater risk of a failure event = shorter duration
- Always look at the substantive/marginal effect plots!!

#### References

- Carter, David B. & Curtis S. Signorino. 2010. "Back to the Future: Modeling Time Dependence in Binary Data." *Political Analysis* 18: 271–292.
- Chiba, Daina, Lanny W. Martin, & Randolph T. Stevenson. 2015.
   "A Copula Approach to the Problem of Selection Bias in Models of Government Survival." *Political Analysis* 23: 42–58.
- Cunningham, Kathleen Gallagher. 2011. "Divide and Conquer or Divide and Concede: How Do States Respond to Internally Divided Separatists?" American Political Science Review 105(2):275–297.
- Gibler, Douglas M. & Jaroslav Tir. 2019. "Settled Borders and Regime Type: Democratic Transitions as Consequences of Peaceful Territorial Transfers." American Journal of Political Science 54(4):951–968.