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Outline

Event count models

o General statistical model: A revisit

o Event count models

o A new probability distribution (actually two distributions)
o Poisson Model

o Quasi-poisson Model

o Negative Binomial Model

o Zero-Inflated Models
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Review: probability distribution

o What is a probability distribution?

POLI803 | Week 6
3/30




Review: probability distribution

o What is a probability distribution?

o Probability distribution = list of probabilities assigned to all possible
outcomes

o How do we describe a probability distribution?

o Examples of probability distributions:

o Bernoulli distribution
Normal distribution
t distribution
Uniform distribution
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Review: probability distribution

The shape of a probability distribution is determined by parameters.
o Normal distribution (two parameters): mean (x) and SD (o)
o Bernoulli distribution (one parameter): probability (p)

o Uniform distribution (two parameters): upper and lower bounds
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Notations

@ When a variable X follows a Normal distribution with mean p and
SD o, we write

X ~N(p, o)

o g, X ~N(0,1), Y ~N(0,2), Z ~N(2,2)
o When a variable X follows a Bernoulli distribution with p, we write
X ~ Bernoulli(p)

o When a variable X follows a uniform distribution with lower bound /
and the upper bound u, we write

X ~U(l,u)
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General statistical model
What do probability distributions mean for regression models?

Linear regression model can be represented as

Y =XB+¢
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General statistical model
What do probability distributions mean for regression models?

Linear regression model can be represented as

Y=X0+¢
Or we can write

Y = X3
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General statistical model
What do probability distributions mean for regression models?

Linear regression model can be represented as

Y=XB+¢
Or we can write
Y = X3
We can also write
Y ~ N(u,0) (1)
p=Xp (2)

@ (1) is called the stochastic component

o (2) is called the systematic component
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Logistic regression model

Representation 1 (latent variable)

Y*=Xp3
P =A(Y")

Representation 2 (random utility)

Y*=XB+¢
Y=1ifY*">0
Y=0ifY"<O0

Representation 3 (Stochastic-Systemic)
Y ~ Bernoulli(p)
p=NXpB)
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General statistical model

o Stochastic component: what kind of probability distribution governs
the distribution of Y
°o Y~ N(Ma U)
o Y ~ Bernoulli(p)
o Y ~ Multinomial(px, p2, ..., Px)

o Systematic component: connect the linear predictor with X using a
link function
o Linear link: p= X3
o Logit link: p = A(X03)
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General statistical model

Linear regression model (Normal-linear)

Y ~ N(p, o)
p=Xp

Logistic regression model (Bernoulli-logistic)

Y ~ Bernoulli(p)
p=NXpB)

Probit regression Model (Bernoulli-probit)

Y ~ Bernoulli(p)
p=®(XB)
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General statistical model
Ordered logistic regression model (with three categories) —
Multinomial-logistic

Y ~ Multinomial(p1, p2, p3)

p1 = N(cut; — X3)

p2 = N(cut, — XB) — N(cut; — X3)

p3 = N(XB — cuty)

Multinomial logistic regression model (with three categories) —
Multinomial-exp.

Y ~ Multinomial(p1, p2, p3)

B exp(XB1)
PL™ ep(XB1) + exp(XB2) + exp(XB3)
N exp(Xﬁg)
P2~ ep(XB1) + exp(XB2) + exp(XB3)
p3 = exp(XB;:,) POLI803 | Week 6

Al AN (WD (WD 10 / 30
EXPIAODT) T EXPILA DY) T EXPILAOI?)



General statistical model

Generalized Linear Models

The approach: allow dependent variable to follow a different distribution

Linear regression Logistic regression Poisson regression
Response variable: Response variable: Response variable:
Normal distribution Bernoulli distribution Poisson distribution

Link function: Link function: Link function:

Identity Logit Log
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Event count models

Let's say we are interested in Y = the number of times some event
happens (0, 1, 2, 3, ...)

o Normal distribution not appropriate
o Bernoulli distribution not appropriate, either

@ We can use Poisson distribution to describe such process

Y ~ Poisson(\)
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Poisson distribution
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When we set A = 1 (e.g., average one attack per year), then the
prob. of seeing 4 attacks is 0.01 and 5 attackes is 0.
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Poisson distribution
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When we set A = 1 (e.g., average one attack per year), then the
prob. of seeing 4 attacks is 0.1 and 5 attackes is 0.05.
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Poisson distribution
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Poisson regression model

o The stochastic component: Poisson distribution
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Poisson regression model

o The stochastic component: Poisson distribution

o The systematic component: connect A with X
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Poisson regression model

o The stochastic component: Poisson distribution
o The systematic component: connect A with X

o Recall that some parameters have restricted range (e.g., 0 < p <1)
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Poisson regression model

o The stochastic component: Poisson distribution

The systematic component: connect A with X
o Recall that some parameters have restricted range (e.g., 0 < p <1)

The parameter of a Poisson distribution, A, must be positive

Y ~ Poisson(\)
A =exp(XP)

where )\ is the mean and the variance
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The Problem of Overdispersion

o This one-to-one relationship () is the mean and the variance)
often fails in real-world data

o Often the variance of the residuals is larger than the mean

Poission Assumption: E[Y] = var(Y)
Over-dispersion: E[Y] < var(Y)
Under-dispersion: E[Y] > var(Y')

R can generate the test of over-dispersion
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Quasipoisson regression

o Over-dispersion gives biased coefficient estimates and standard
errors

Need a strategy to disentangle the mean and variance

We estimate a dispersion parameter ¢ from the residuals

-z (U5)

var = ¢mean

So what differs between the poisson and the quasi-poission model?
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Quasipoisson regression

o Over-dispersion gives biased coefficient estimates and standard
errors

Need a strategy to disentangle the mean and variance

We estimate a dispersion parameter ¢ from the residuals

-z (U5)

var = ¢mean

So what differs between the poisson and the quasi-poission model?
— the s.e. differs but the mean remains unchanged
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Quasipoisson regression

o Over-dispersion gives biased coefficient estimates and standard
errors

Need a strategy to disentangle the mean and variance

We estimate a dispersion parameter ¢ from the residuals

-z (U5)

var = ¢mean

So what differs between the poisson and the quasi-poission model?
— the s.e. differs but the mean remains unchanged

o Quasi-poission will have a larger s.e., but the MLE model is the
same
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Negative binomial regression

o A different solution is to use a even more flexible model with two
parameters (A and 6)

o In practice, negative binomial model is more frequently used

Y ~ negbin(\, 0)
A = exp(X)

where \ is the mean and 6 captures the variance

When 6 = 1, the model reduces to Poisson
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Estimation
o To fit a poisson regression in R:

glm(Y ~ X1 + X2 + X3..., data = data, family = poisson)

o To fit a negative binomial regression in R:

library (MASS)
glm.nb(Y ~ X1 + X2 4+ X3..., data = data)

o Note: AIC scores are not comparable across these two models

o A statistically significant estimate of 6 ~ negative binomial is
appropriate (potentially due to an excess of zeros)

o 0 is usually interpreted as a measure of overdispersion in the
Negative Binomial distribution
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Example: domestic terrorist attacks

Piazza (2006), JPR

o Y: number of domestic terrorist attacks a country experiences per
year

@ Unit of observation: country-year (172 countries, 1970-2006)
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Domestic terrorist attacks: DV

Number of Terrorist Attacks, 1970-2006
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Domestic terrorist attacks: DV
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Domestic terrorist attacks: DV
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Domestic terrorist attacks: DV
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Domestic terrorist attacks: DV
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Domestic terrorist attacks: DV
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lo:sson Iegatlve

Binomial
ECDIS 1.217*** 1.457*%*
(0.020) (0.102)
Population 0.704*** 1.082***
(0.007) (0.046)
Area —0.318*** —0.348***
(0.006) (0.036)
Durable —0.003*** —0.009***
(0.0002) (0.002)
GNI 0.209*** 0.215***
(0.006) (0.040)
GINI 0.038*** 0.049™***
(0.001) (0.006)
Partic —0.222*** —0.299***
(0.008) (0.049)
Executive —0.138*** —0.159***
(0.004) (0.032)
Constant 1.288*** 0.276
(0.077) (0.555)
Observations 2,964 2,964
Log Likelihood —39,985.850 —5,626.221
0 0.185%** (0.007)
Akaike Inf. Crit. 79,989.700 11,270.440
Note: *p<0.1; **p<0.05; ***p<0.01
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Domestic terrorist attacks: effects

Effect of Economic Discrimination

Predicted Number of Terrorist Attacks

Economically Discriminated Minority Present?

POLI803 | Week 6
22 /30




Domestic terrorist attacks: effects

Effect of Executive Constraint

Predicted Number of Terrorist Attacks

-8 -6 -4 -2 0 2 4 6

Executive Constraint (Polity)
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A New Problem: Too many zeros
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Zero-inflation
One reason why you might see overdispersion is that there are too
many zeroes in the count data.

o Empirical reason: by separately accounting for the zeroes, we can
do a better job with standard errors. — more precision
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Zero-inflation

One reason why you might see overdispersion is that there are too
many zeroes in the count data.

o Empirical reason: by separately accounting for the zeroes, we can
do a better job with standard errors. — more precision

o Theoretical reason: but there is a substantively important reason
why we might want to model the extra zeroes. It may be the case
that the zeroes come from a different data generating process
than the nonzeroes.
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Zero-inflation

One reason why you might see overdispersion is that there are too
many zeroes in the count data.

o Empirical reason: by separately accounting for the zeroes, we can
do a better job with standard errors. — more precision

o Theoretical reason: but there is a substantively important reason
why we might want to model the extra zeroes. It may be the case
that the zeroes come from a different data generating process
than the nonzeroes.
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Zero-inflation

One reason why you might see overdispersion is that there are too
many zeroes in the count data.

o Empirical reason: by separately accounting for the zeroes, we can
do a better job with standard errors. — more precision

o Theoretical reason: but there is a substantively important reason
why we might want to model the extra zeroes. It may be the case
that the zeroes come from a different data generating process
than the nonzeroes.

Two groups of observations:
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Zero-inflation

One reason why you might see overdispersion is that there are too
many zeroes in the count data.

o Empirical reason: by separately accounting for the zeroes, we can
do a better job with standard errors. — more precision

o Theoretical reason: but there is a substantively important reason
why we might want to model the extra zeroes. It may be the case
that the zeroes come from a different data generating process
than the nonzeroes.

Two groups of observations:

O Always-zeros: the group that must have a count of 0 (= immune
from the event), or
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Zero-inflation

One reason why you might see overdispersion is that there are too
many zeroes in the count data.

o Empirical reason: by separately accounting for the zeroes, we can
do a better job with standard errors. — more precision

o Theoretical reason: but there is a substantively important reason
why we might want to model the extra zeroes. It may be the case
that the zeroes come from a different data generating process
than the nonzeroes.

Two groups of observations:

O Always-zeros: the group that must have a count of 0 (= immune
from the event), or

© Maybe-zeros: the group that can have a count of 0, but might have
a nonzero count.
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Zero-inflation

These two groups are only partially observed.
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Zero-inflation
These two groups are only partially observed.

o If the count is nonzero ~ we know that the observation is in the
second group
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Zero-inflation
These two groups are only partially observed.

o If the count is nonzero ~ we know that the observation is in the
second group

o If the count is zero ~» we can only estimate which group it comes
from
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Zero-inflation
These two groups are only partially observed.

o If the count is nonzero ~ we know that the observation is in the
second group

o If the count is zero ~» we can only estimate which group it comes
from

We model two things at the same time:

@ the probability that each observation could have been in each group,
and

@ the expected count for observations in the nonzero-count group.
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Zero-inflation
These two groups are only partially observed.

o If the count is nonzero ~ we know that the observation is in the
second group

o If the count is zero ~» we can only estimate which group it comes
from

We model two things at the same time:

@ the probability that each observation could have been in each group,
and

@ the expected count for observations in the nonzero-count group.

This model leads to zero-inflated Poisson and to zero-inflated
negative binomial.
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Let group A be the group that must always be 0.
Let group B be the group with potentially nonzero counts.
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Let group A be the group that must always be 0.
Let group B be the group with potentially nonzero counts.

For group A, the count must be zero, so the PMF (Prob. mass
function, for discrete variables) is:

fA(y,' = 0) =1, fA(y,- > O) =0.
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Let group A be the group that must always be 0.
Let group B be the group with potentially nonzero counts.

For group A, the count must be zero, so the PMF (Prob. mass
function, for discrete variables) is:

fA(y,' = 0) =1, fA(y,- > 0) =0.
For group B, the count is Poisson distributed:

y

Al n
fe(yilAi) = e
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Let group A be the group that must always be 0.
Let group B be the group with potentially nonzero counts.

For group A, the count must be zero, so the PMF (Prob. mass
function, for discrete variables) is:

fA(y,' = 0) =1, fA(y,- > 0) =0.
For group B, the count is Poisson distributed:

AN = 2N
(i) = e
Suppose an observation belongs to group A with probability 7; and
group B with probability 1 — ;.

Then any observation has the average of these two distributions:

f(yilmi, Ai) = mifa(yr = 0) + (1 — ;) fe(yilAi)

Ny
=mi+(1—m)te ™
Yi:
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Yi

f(yilmi, \i) = mi + (1 — Wi)y—f,e_A"
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Yi

f(y,-|7r,-, )\,‘) =T+ (1 — ﬂ;)y—{le_x"

If y; =0, then this PMF becomes
)\0
f(y,- = 0|7I',', )\,') =mi+ (1 - F;)ae_A"

=m+ (1 — 7T,')e_)\i
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Yi
f(y,-|7r,-, )\,‘) =7+ (1 — Tr,')y—fle_A’
il

If y; =0, then this PMF becomes

)\0
f(y,- = 0|7I',', )\,') =mi+ (1 - W;)EG_A"

=m+ (1 — 7T,')e_)\i
If y; > 0, then this PMF becomes

f(yi > 0|mi, A\j) = (1 — ;)
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yi
f(y,"ﬂ',', )\,') =+ (1 — ﬂi)ﬁe_Ai

If y; =0, then this PMF becomes
0

A
f(yi=0|m, i) =mi + (1 — 7Ti)ﬁe_A"
=7+ (1—m)e

If y; > 0, then this PMF becomes
A
f(yi > 0|mi, Aj) = (1 — Wi)y*f,eﬂ\"

i
Define a dummy variable Iy; to indicate whether y; = 0, then the
whole stochastic component is

o 1—lo;
R 0i )\}’1 R
F(yilmis Ai) = | 7+ (1= m)e ™ (1- m)yf, e "
Bernoulli _—
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Zero-inflated Poisson

We are going to fit both 7; and A; with linear aggregators, so that
we can predict which observations have a count, and the count for
those that do.

*

yiy = o1 + Bixi
%k

Yie = a2 + Baxoj
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Zero-inflated Poisson

We are going to fit both 7; and A; with linear aggregators, so that
we can predict which observations have a count, and the count for
those that do.

%
yiy = o1 + Bixi

yi = a2 + foaxo;
and two link functions
)\I = eyi*)\
1
T = ———
1+ e Vin

Note: we have different coefficients and we can have different x
variables for each part.
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Zero-inflated Poisson

Quantities of interest:
o Probability of not being “at risk” (immune to events):

T
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Zero-inflated Poisson
Quantities of interest:

o Probability of not being “at risk” (immune to events):
i
o Average count, conditional on having a count at all:

Ai
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Zero-inflated Poisson
Quantities of interest:

o Probability of not being “at risk” (immune to events):
i

o Average count, conditional on having a count at all:
Ai

o Average count:

(1 — 7r,-)>\,-
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Zero-inflated Poisson
Quantities of interest:

o Probability of not being “at risk” (immune to events):
i

o Average count, conditional on having a count at all:
Ai

o Average count:

(1 — 7r,-)>\,-

Note: when a particular xx appears both in the y equation and in
the y¥ equation, the sign of 3, can be really misleading. Interpret
them carefully.
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Estimation: pscl package

o To fit a zero-inflated poisson regression in R:

library(pscl)
zeroinfl(Y ~ X1 + X2 4+ X3... | Z1 + Z2 4+ Z3 ..., data = data,
dist = "poisson")

o To fit a zero-inflated negative binomial regression in R:

library(pscl)
zeroinfl(Y ~ X1 + X2 + X3... | Z1 + Z2 + Z3 ..., data = data,
dist = "negbin")
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