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Outline

Event count models

General statistical model: A revisit

Event count models

A new probability distribution (actually two distributions)

Poisson Model

Quasi-poisson Model

Negative Binomial Model

Zero-Inflated Models
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Review: probability distribution

What is a probability distribution?

Probability distribution = list of probabilities assigned to all possible
outcomes

How do we describe a probability distribution?

Examples of probability distributions:

Bernoulli distribution
Normal distribution
t distribution
Uniform distribution
...
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Review: probability distribution

The shape of a probability distribution is determined by parameters.

Normal distribution (two parameters): mean (µ) and SD (σ)

Bernoulli distribution (one parameter): probability (p)

Uniform distribution (two parameters): upper and lower bounds
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Notations

When a variable X follows a Normal distribution with mean µ and
SD σ, we write

X ∼ N (µ, σ)

e.g., X ∼ N (0, 1), Y ∼ N (0, 2), Z ∼ N (2, 2)

When a variable X follows a Bernoulli distribution with p, we write

X ∼ Bernoulli(p)

When a variable X follows a uniform distribution with lower bound l
and the upper bound u, we write

X ∼ U(l , u)
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General statistical model
What do probability distributions mean for regression models?

Linear regression model can be represented as

Y = Xβ + ϵ

Or we can write

Ŷ = Xβ

We can also write

Y ∼ N (µ, σ) (1)
µ = Xβ (2)

(1) is called the stochastic component

(2) is called the systematic component
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Ŷ = Xβ

We can also write

Y ∼ N (µ, σ) (1)
µ = Xβ (2)

(1) is called the stochastic component

(2) is called the systematic component

6 / 30
POLI803 | Week 6

▲



Review Review Event Count Models Example

General statistical model
What do probability distributions mean for regression models?

Linear regression model can be represented as

Y = Xβ + ϵ

Or we can write
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Logistic regression model
Representation 1 (latent variable)

Y ∗ = Xβ

P̂ = Λ(Y ∗)

Representation 2 (random utility)

Y ∗ = Xβ + ϵ

Y = 1 ifY ∗ > 0
Y = 0 ifY ∗ ≤ 0

Representation 3 (Stochastic-Systemic)

Y ∼ Bernoulli(p)

p = Λ(Xβ)
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General statistical model

Stochastic component: what kind of probability distribution governs
the distribution of Y

Y ∼ N (µ, σ)
Y ∼ Bernoulli(p)
Y ∼ Multinomial(p1, p2, ..., pk)

Systematic component: connect the linear predictor with X using a
link function

Linear link: µ = Xβ
Logit link: p = Λ(Xβ)
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General statistical model

Linear regression model (Normal-linear)

Y ∼ N (µ, σ)

µ = Xβ

Logistic regression model (Bernoulli-logistic)

Y ∼ Bernoulli(p)

p = Λ(Xβ)

Probit regression Model (Bernoulli-probit)

Y ∼ Bernoulli(p)

p = Φ(Xβ)
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General statistical model
Ordered logistic regression model (with three categories) →
Multinomial-logistic

Y ∼ Multinomial(p1, p2, p3)

p1 = Λ(cut1 − Xβ)

p2 = Λ(cut2 − Xβ)− Λ(cut1 − Xβ)

p3 = Λ(Xβ − cut2)

Multinomial logistic regression model (with three categories) →
Multinomial-exp.

Y ∼ Multinomial(p1, p2, p3)

p1 =
exp(Xβ1)

exp(Xβ1) + exp(Xβ2) + exp(Xβ3)

p2 =
exp(Xβ2)

exp(Xβ1) + exp(Xβ2) + exp(Xβ3)

p3 =
exp(Xβ3)

exp(Xβ1) + exp(Xβ2) + exp(Xβ3) 10 / 30
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General statistical model
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Event count models

Let’s say we are interested in Y = the number of times some event
happens (0, 1, 2, 3, ...)

Normal distribution not appropriate

Bernoulli distribution not appropriate, either

We can use Poisson distribution to describe such process

Y ∼ Poisson(λ)
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Poisson distribution
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lambda = 1

When we set λ = 1 (e.g., average one attack per year), then the
prob. of seeing 4 attacks is 0.01 and 5 attackes is 0.
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Poisson regression model

The stochastic component: Poisson distribution

The systematic component: connect λ with X

Recall that some parameters have restricted range (e.g., 0 ≤ p ≤ 1)

The parameter of a Poisson distribution, λ, must be positive

Y ∼ Poisson(λ)

λ = exp(Xβ)

where λ is the mean and the variance
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The Problem of Overdispersion

This one-to-one relationship (λ is the mean and the variance)
often fails in real-world data

Often the variance of the residuals is larger than the mean

Poission Assumption: E [Y ] = var(Y )

Over-dispersion: E [Y ] < var(Y )

Under-dispersion: E [Y ] > var(Y )

R can generate the test of over-dispersion
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Quasipoisson regression

Over-dispersion gives biased coefficient estimates and standard
errors

Need a strategy to disentangle the mean and variance

We estimate a dispersion parameter ϕ from the residuals

ϕ̂ =
1

N − k

∑(
(yi − ŷi )

2

ŷi

)
var = ϕmean

So what differs between the poisson and the quasi-poission model?

→ the s.e. differs but the mean remains unchanged

Quasi-poission will have a larger s.e., but the MLE model is the
same
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Negative binomial regression

A different solution is to use a even more flexible model with two
parameters (λ and θ)

In practice, negative binomial model is more frequently used

Y ∼ negbin(λ, θ)

λ = exp(Xβ)

where λ is the mean and θ captures the variance

When θ = 1, the model reduces to Poisson
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Estimation

To fit a poisson regression in R:

glm(Y ∼ X1 + X2 + X3..., data = data, family = poisson)

To fit a negative binomial regression in R:

library(MASS)
glm.nb(Y ∼ X1 + X2 + X3..., data = data)

Note: AIC scores are not comparable across these two models

A statistically significant estimate of θ ⇝ negative binomial is
appropriate (potentially due to an excess of zeros)
θ is usually interpreted as a measure of overdispersion in the
Negative Binomial distribution
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Example: domestic terrorist attacks

Piazza (2006), JPR

Y : number of domestic terrorist attacks a country experiences per
year

Unit of observation: country-year (172 countries, 1970–2006)
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Domestic terrorist attacks: DV
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Domestic terrorist attacks: DV
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Domestic terrorist attacks: DV
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Domestic terrorist attacks: DV
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Review Review Event Count Models Example
Poisson Negative

Binomial

ECDIS 1.217∗∗∗ 1.457∗∗∗
(0.020) (0.102)

Population 0.704∗∗∗ 1.082∗∗∗
(0.007) (0.046)

Area −0.318∗∗∗ −0.348∗∗∗
(0.006) (0.036)

Durable −0.003∗∗∗ −0.009∗∗∗
(0.0002) (0.002)

GNI 0.209∗∗∗ 0.215∗∗∗
(0.006) (0.040)

GINI 0.038∗∗∗ 0.049∗∗∗
(0.001) (0.006)

Partic −0.222∗∗∗ −0.299∗∗∗
(0.008) (0.049)

Executive −0.138∗∗∗ −0.159∗∗∗
(0.004) (0.032)

Constant 1.288∗∗∗ 0.276
(0.077) (0.555)

Observations 2,964 2,964
Log Likelihood −39,985.850 −5,626.221
θ 0.185∗∗∗ (0.007)
Akaike Inf. Crit. 79,989.700 11,270.440

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
21 / 30

POLI803 | Week 6

▲



Review Review Event Count Models Example

Domestic terrorist attacks: effects
Effect of Economic Discrimination
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Domestic terrorist attacks: effects
Effect of Executive Constraint

Executive Constraint (Polity)
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A New Problem: Too many zeros
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Zero-inflation

One reason why you might see overdispersion is that there are too
many zeroes in the count data.

Empirical reason: by separately accounting for the zeroes, we can
do a better job with standard errors. → more precision

Theoretical reason: but there is a substantively important reason
why we might want to model the extra zeroes. It may be the case
that the zeroes come from a different data generating process
than the nonzeroes.

Two groups of observations:

1 Always-zeros: the group that must have a count of 0 (= immune
from the event), or

2 Maybe-zeros: the group that can have a count of 0, but might have
a nonzero count.
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Zero-inflation

These two groups are only partially observed.

If the count is nonzero ⇝ we know that the observation is in the
second group

If the count is zero ⇝ we can only estimate which group it comes
from

We model two things at the same time:

1 the probability that each observation could have been in each group,
and

2 the expected count for observations in the nonzero-count group.

This model leads to zero-inflated Poisson and to zero-inflated
negative binomial.
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Let group A be the group that must always be 0.
Let group B be the group with potentially nonzero counts.

For group A, the count must be zero, so the PMF (Prob. mass
function, for discrete variables) is:

fA(yi = 0) = 1, fA(yi > 0) = 0.

For group B , the count is Poisson distributed:

fB(yi |λi ) =
λy
i

yi !
e−λi

Suppose an observation belongs to group A with probability πi and
group B with probability 1 − πi .
Then any observation has the average of these two distributions:

f (yi |πi , λi ) = πi fA(y1 = 0) + (1 − πi )fB(yi |λi )

= πi + (1 − πi )
λy
i

yi !
e−λi
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For group B , the count is Poisson distributed:

fB(yi |λi ) =
λy
i

yi !
e−λi

Suppose an observation belongs to group A with probability πi and
group B with probability 1 − πi .
Then any observation has the average of these two distributions:

f (yi |πi , λi ) = πi fA(y1 = 0) + (1 − πi )fB(yi |λi )

= πi + (1 − πi )
λy
i

yi !
e−λi
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f (yi |πi , λi ) = πi + (1 − πi )
λyi
i

yi !
e−λi

If yi = 0, then this PMF becomes

f (yi = 0|πi , λi ) = πi + (1 − πi )
λ0

0!
e−λi

= πi + (1 − πi )e
−λi

If yi > 0, then this PMF becomes

f (yi > 0|πi , λi ) = (1 − πi )
λyi
i

yi !
e−λi

Define a dummy variable I0i to indicate whether yi = 0, then the
whole stochastic component is

f (yi |πi , λi ) =

πi + (1 − πi )e
−λi︸ ︷︷ ︸

Bernoulli

I0i

(1 − πi )
λyi
i

yi !
e−λi︸ ︷︷ ︸

Count


1−I0i
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Review Review Event Count Models Example

Zero-inflated Poisson
We are going to fit both πi and λi with linear aggregators, so that
we can predict which observations have a count, and the count for
those that do.

y∗iλ = α1 + β1x1i

y∗iπ = α2 + β2x2i

and two link functions

λi = ey
∗
iλ

πi =
1

1 + e−y∗
iπ

Note: we have different coefficients and we can have different x
variables for each part.

28 / 30
POLI803 | Week 6

▲



Review Review Event Count Models Example

Zero-inflated Poisson
We are going to fit both πi and λi with linear aggregators, so that
we can predict which observations have a count, and the count for
those that do.

y∗iλ = α1 + β1x1i

y∗iπ = α2 + β2x2i

and two link functions

λi = ey
∗
iλ

πi =
1

1 + e−y∗
iπ

Note: we have different coefficients and we can have different x
variables for each part.

28 / 30
POLI803 | Week 6

▲
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Zero-inflated Poisson
Quantities of interest:

Probability of not being “at risk” (immune to events):

πi

Average count, conditional on having a count at all:

λi

Average count:

(1 − πi )λi

Note: when a particular xk appears both in the y∗π equation and in
the y∗λ equation, the sign of βk can be really misleading. Interpret
them carefully.
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Estimation: pscl package

To fit a zero-inflated poisson regression in R:

library(pscl)
zeroinfl(Y ∼ X1 + X2 + X3... | Z1 + Z2 + Z3 ..., data = data,
dist = "poisson")

To fit a zero-inflated negative binomial regression in R:

library(pscl)
zeroinfl(Y ∼ X1 + X2 + X3... | Z1 + Z2 + Z3 ..., data = data,
dist = "negbin")
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