Week 6: Event Count Model POLI803

Howard Liu

Week 6, 2024

University of South Carolina

POLI803 | Week 6

Outline

Event count models

• General statistical model: A revisit

- Event count models
 - A new probability distribution (actually two distributions)
 - Poisson Model
 - Quasi-poisson Model
 - Negative Binomial Model
 - Zero-Inflated Models

Review: probability distribution

• What is a probability distribution?

Review: probability distribution

- What is a probability distribution?
- Probability distribution = list of probabilities assigned to all possible outcomes
- How do we describe a probability distribution?
- Examples of probability distributions:
 - Bernoulli distribution
 - Normal distribution
 - t distribution
 - Uniform distribution
 - ...

Review: probability distribution

The shape of a probability distribution is determined by parameters.

- Normal distribution (two parameters): mean (μ) and SD (σ)
- Bernoulli distribution (one parameter): probability (p)
- Uniform distribution (two parameters): upper and lower bounds

.

Notations

• When a variable X follows a Normal distribution with mean μ and SD $\sigma,$ we write

$$X \sim \mathcal{N}(\mu, \sigma)$$

• e.g.,
$$X \sim \mathcal{N}(0,1)$$
, $Y \sim \mathcal{N}(0,2)$, $Z \sim \mathcal{N}(2,2)$

• When a variable X follows a Bernoulli distribution with p, we write

 $X \sim Bernoulli(p)$

• When a variable X follows a uniform distribution with lower bound *I* and the upper bound *u*, we write

$$X \sim \mathcal{U}(I, u)$$

.

Example

General statistical model

What do probability distributions mean for regression models?

Linear regression model can be represented as

$$Y = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

General statistical model

What do probability distributions mean for regression models?

Linear regression model can be represented as

$$Y = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

Or we can write

.

 $\hat{Y} = \boldsymbol{X}\boldsymbol{\beta}$

General statistical model

What do probability distributions mean for regression models?

Linear regression model can be represented as

$$Y = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

Or we can write

$$\hat{Y} = \boldsymbol{X}\boldsymbol{\beta}$$

We can also write

.

$$Y \sim \mathcal{N}(\mu, \sigma)$$
 (1)

$$\mu = \boldsymbol{X}\boldsymbol{\beta} \tag{2}$$

- (1) is called the stochastic component
- (2) is called the systematic component

Logistic regression model

Representation 1 (latent variable)

 $Y^* = \boldsymbol{X}\boldsymbol{eta}$ $\hat{P} = \Lambda(Y^*)$

Representation 2 (random utility)

 $Y^* = \mathbf{X}\boldsymbol{\beta} + \epsilon$ $Y = 1 \text{ if } Y^* > 0$ $Y = 0 \text{ if } Y^* \le 0$

Representation 3 (Stochastic-Systemic)

.

 $Y \sim Bernoulli(p)$ $p = \Lambda(\boldsymbol{X}\boldsymbol{eta})$

POLI803 | Week 6 7 / 30

General statistical model

- Stochastic component: what kind of probability distribution governs the distribution of Y
 - $Y \sim \mathcal{N}(\mu, \sigma)$
 - $Y \sim Bernoulli(p)$
 - $Y \sim Multinomial(p_1, p_2, ..., p_k)$
- Systematic component: connect the linear predictor with X using a link function
 - Linear link: $\mu = \mathbf{X} \boldsymbol{\beta}$
 - Logit link: $p = \Lambda(X\beta)$

General statistical model

Linear regression model (Normal-linear)

$$egin{aligned} Y &\sim \mathcal{N}(\mu, \sigma) \ \mu &= oldsymbol{X}oldsymbol{eta} \end{aligned}$$

Logistic regression model (Bernoulli-logistic)

 $Y \sim Bernoulli(p)$ $p = \Lambda(\boldsymbol{X} \boldsymbol{eta})$

Probit regression Model (Bernoulli-probit)

.

 $Y \sim Bernoulli(p)$ $p = \Phi(\boldsymbol{X} \boldsymbol{\beta})$

POLI803 | Week 6 9 / 30

General statistical model

Ordered logistic regression model (with three categories) \rightarrow Multinomial-logistic

$$\begin{aligned} Y &\sim \textit{Multinomial}(p_1, p_2, p_3) \\ p_1 &= \Lambda(\textit{cut}_1 - \pmb{X}\beta) \\ p_2 &= \Lambda(\textit{cut}_2 - \pmb{X}\beta) - \Lambda(\textit{cut}_1 - \pmb{X}\beta) \\ p_3 &= \Lambda(\pmb{X}\beta - \textit{cut}_2) \end{aligned}$$

Multinomial logistic regression model (with three categories) \rightarrow Multinomial-exp.

$$Y \sim Multinomial(p_1, p_2, p_3)$$

$$p_1 = \frac{\exp(\mathbf{X}\beta_1)}{\exp(\mathbf{X}\beta_1) + \exp(\mathbf{X}\beta_2) + \exp(\mathbf{X}\beta_3)}$$

$$p_2 = \frac{\exp(\mathbf{X}\beta_2)}{\exp(\mathbf{X}\beta_1) + \exp(\mathbf{X}\beta_2) + \exp(\mathbf{X}\beta_3)}$$

$$p_3 = \frac{\exp(\mathbf{X}\beta_3)}{\exp(\mathbf{X}\beta_1) + \exp(\mathbf{X}\beta_2) + \exp(\mathbf{X}\beta_3)}$$
10 / 30

General statistical model

Generalized Linear Models

The approach: allow dependent variable to follow a different distribution

Event count models

Let's say we are interested in Y = the number of times some event happens (0, 1, 2, 3, ...)

- Normal distribution not appropriate
- Bernoulli distribution not appropriate, either

.

• We can use **Poisson distribution** to describe such process

 $Y \sim Poisson(\lambda)$

POLI803 | Week 6 12 / 30

Poisson distribution

When we set $\lambda = 1$ (e.g., average one attack per year), then the prob. of seeing 4 attacks is 0.01 and 5 attackes is 0.

Poisson distribution

When we set $\lambda = 1$ (e.g., average one attack per year), then the prob. of seeing 4 attacks is 0.1 and 5 attackes is 0.05.

Poisson distribution

.

POLI803 | Week 6 13 / 30

Poisson distribution

Poisson regression model

• The stochastic component: Poisson distribution

.

Poisson regression model

- The stochastic component: Poisson distribution
- The systematic component: connect λ with X

Δ.

Poisson regression model

- The stochastic component: Poisson distribution
- The systematic component: connect λ with X
- Recall that some parameters have restricted range (e.g., $0 \le p \le 1$)

Poisson regression model

- The stochastic component: Poisson distribution
- The systematic component: connect λ with X
- Recall that some parameters have restricted range (e.g., $0 \le p \le 1$)
- The parameter of a Poisson distribution, λ , must be positive

 $Y \sim Poisson(\lambda)$ $\lambda = \exp(\boldsymbol{X}\boldsymbol{eta})$

where λ is the mean and the variance

The Problem of Overdispersion

- This one-to-one relationship (λ is the mean and the variance) often fails in real-world data
- Often the variance of the residuals is larger than the mean

Poission Assumption: E[Y] = var(Y)Over-dispersion: E[Y] < var(Y)Under-dispersion: E[Y] > var(Y)

R can generate the test of over-dispersion

Quasipoisson regression

- Over-dispersion gives biased coefficient estimates and standard errors
- Need a strategy to disentangle the mean and variance
- We estimate a dispersion parameter ϕ from the residuals

$$\hat{\phi} = \frac{1}{N-k} \sum \left(\frac{(y_i - \hat{y}_i)^2}{\hat{y}_i} \right)$$

 $\mathsf{var} = \phi\mathsf{mean}$

• So what differs between the poisson and the quasi-poission model?

Quasipoisson regression

- Over-dispersion gives biased coefficient estimates and standard errors
- Need a strategy to disentangle the mean and variance
- We estimate a dispersion parameter ϕ from the residuals

$$\hat{\phi} = \frac{1}{N-k} \sum \left(\frac{(y_i - \hat{y}_i)^2}{\hat{y}_i} \right)$$

 $\mathsf{var} = \phi\mathsf{mean}$

So what differs between the poisson and the quasi-poission model?
 → the s.e. differs but the mean remains unchanged

Quasipoisson regression

- Over-dispersion gives biased coefficient estimates and standard errors
- Need a strategy to disentangle the mean and variance
- We estimate a dispersion parameter ϕ from the residuals

$$\hat{\phi} = \frac{1}{N-k} \sum \left(\frac{(y_i - \hat{y}_i)^2}{\hat{y}_i} \right)$$

 $\mathsf{var} = \phi\mathsf{mean}$

- So what differs between the poisson and the quasi-poission model?
 → the s.e. differs but the mean remains unchanged
- Quasi-poission will have a larger s.e., but the MLE model is the same

Negative binomial regression

- A different solution is to use a even more flexible **model** with two parameters (λ and θ)
- In practice, negative binomial model is more frequently used

 $Y \sim negbin(\lambda, heta)$ $\lambda = \exp(\boldsymbol{X}\boldsymbol{eta})$

where λ is the mean and θ captures the variance

When $\theta = 1$, the model reduces to Poisson

Estimation

To fit a poisson regression in R:

 $glm(Y \sim X1 + X2 + X3..., data = data, family = poisson)$

• To fit a negative binomial regression in R:

library(MASS) $glm.nb(Y \sim X1 + X2 + X3..., data = data)$

- Note: AIC scores are not comparable across these two models
 - A statistically significant estimate of $\theta \rightsquigarrow$ negative binomial is appropriate (potentially due to an excess of zeros)
 - θ is usually interpreted as a measure of overdispersion in the Negative Binomial distribution

Example: domestic terrorist attacks

Piazza (2006), JPR

- Y: number of domestic terrorist attacks a country experiences per year
- Unit of observation: country-year (172 countries, 1970-2006)

POLI803 | Week 6 19 / 30

Number of Terrorist Attacks, 1970-2006

POLI803 | Week 6 20 / 30

Δ

Domestic terrorist attacks: DV

POLI803 | Week 6 20 / 30

.

Domestic terrorist attacks: DV

POLI803 | Week 6 20 / 30

Review

Review	Event Count Models		
	Poisson	Negative Binomial	
ECDIS	1.217*** (0.020)	1.457*** (0.102)	
Population	0.704 ^{***} (0.007)	1.082 ^{***} (0.046)	
Area	-0.318*** (0.006)	-0.348*** (0.036)	
Durable	-0.003*** (0.0002)	-0.009*** (0.002)	
GNI	0.209 ^{***} (0.006)	0.215 ^{***} (0.040)	
GINI	0.038 ^{***} (0.001)	0.049 ^{***} (0.006)	
Partic	-0.222*** (0.008)	-0.299 ^{***} (0.049)	
Executive	-0.138 ^{***} (0.004)	-0.159 ^{***} (0.032)	
Constant	1.288*** (0.077)	0.276 (0.555)	
Observations Log Likelihood θ Akaike Inf. Crit.	2,964 39,985.850 79,989.700	2,964 -5,626.221 0.185*** (0.007) 11,270.440	-
Note:		p<0.05; ***p<0.01	POLI803 W

.

Week 6 21 / 30

(Example)

Domestic terrorist attacks: effects

Effect of Economic Discrimination

POLI803 | Week 6 22 / 30

Domestic terrorist attacks: effects

Effect of Executive Constraint

22 / 30

A New Problem: Too many zeros

POLI803 | Week 6 23 / 30

.

One reason why you might see overdispersion is that there are **too many zeroes** in the count data.

• Empirical reason: by separately accounting for the zeroes, we can do a **better job with standard errors**. → more precision

POLI803 | Week 6 24 / 30

.

One reason why you might see overdispersion is that there are **too many zeroes** in the count data.

- Empirical reason: by separately accounting for the zeroes, we can do a **better job with standard errors**. \rightarrow more precision
- Theoretical reason: but there is a substantively important reason why we might want to model the extra zeroes. It may be the case that the zeroes come from a different data generating process than the nonzeroes.

POLI803 | Week 6 24 / 30

One reason why you might see overdispersion is that there are **too many zeroes** in the count data.

- Empirical reason: by separately accounting for the zeroes, we can do a **better job with standard errors**. \rightarrow more precision
- Theoretical reason: but there is a substantively important reason why we might want to model the extra zeroes. It may be the case that the zeroes come from a different data generating process than the nonzeroes.

POLI803 | Week 6 24 / 30

One reason why you might see overdispersion is that there are **too many zeroes** in the count data.

- Empirical reason: by separately accounting for the zeroes, we can do a **better job with standard errors**. \rightarrow more precision
- Theoretical reason: but there is a substantively important reason why we might want to model the extra zeroes. It may be the case that the zeroes come from a different data generating process than the nonzeroes.

Two groups of observations:

24 / 30

POLI803 | Week 6

24 / 30

Zero-inflation

One reason why you might see overdispersion is that there are **too many zeroes** in the count data.

- Empirical reason: by separately accounting for the zeroes, we can do a **better job with standard errors**. \rightarrow more precision
- Theoretical reason: but there is a substantively important reason why we might want to model the extra zeroes. It may be the case that the zeroes come from a different data generating process than the nonzeroes.

Two groups of observations:

Always-zeros: the group that must have a count of 0 (= immune from the event), or

One reason why you might see overdispersion is that there are **too many zeroes** in the count data.

- Empirical reason: by separately accounting for the zeroes, we can do a **better job with standard errors**. \rightarrow more precision
- Theoretical reason: but there is a substantively important reason why we might want to model the extra zeroes. It may be the case that the zeroes come from a different data generating process than the nonzeroes.

Two groups of observations:

- Always-zeros: the group that must have a count of 0 (= immune from the event), or
- Maybe-zeros: the group that can have a count of 0, but might have a nonzero count.

POLI803 | Week 6 24 / 30

These two groups are only partially observed.

POLI803 | Week 6

25 / 30

Zero-inflation

These two groups are only partially observed.

• If the count is nonzero \rightsquigarrow we ${\bf know}$ that the observation is in the second group

POL1803

25 / 30

Zero-inflation

These two groups are only partially observed.

- If the count is nonzero \rightsquigarrow we ${\bf know}$ that the observation is in the second group
- If the count is zero → we can only estimate which group it comes from

These two groups are only partially observed.

- If the count is nonzero \rightsquigarrow we ${\bf know}$ that the observation is in the second group
- If the count is zero \rightsquigarrow we can only estimate which group it comes from

We model two things at the same time:

- the probability that each observation could have been in each group, and
- 2 the expected count for observations in the nonzero-count group.

25 / 30

These two groups are only partially observed.

- If the count is nonzero \rightsquigarrow we ${\bf know}$ that the observation is in the second group
- If the count is zero \rightsquigarrow we can only estimate which group it comes from

We model two things at the same time:

- the probability that each observation could have been in each group, and
- 2 the expected count for observations in the nonzero-count group.

This model leads to zero-inflated Poisson and to zero-inflated negative binomial.

POLI803 | Week 6

POLI803 | Week 6

26 / 30

Let group A be the group that must always be 0. Let group B be the group with potentially nonzero counts. Let group A be the group that must always be 0. Let group B be the group with potentially nonzero counts.

For group *A*, the count must be zero, so the PMF (Prob. mass function, for discrete variables) is:

$$f_A(y_i = 0) = 1, \ f_A(y_i > 0) = 0.$$

POLI803 | Week 6 26 / 30

26 / 30

Let group A be the group that must always be 0. Let group B be the group with potentially nonzero counts.

For group *A*, the count must be zero, so the PMF (Prob. mass function, for discrete variables) is:

$$f_A(y_i = 0) = 1, \ f_A(y_i > 0) = 0.$$

For group B, the count is Poisson distributed:

$$f_B(y_i|\lambda_i) = rac{\lambda_i^y}{y_i!}e^{-\lambda_i}$$

Let group A be the group that must always be 0. Let group B be the group with potentially nonzero counts.

For group *A*, the count must be zero, so the PMF (Prob. mass function, for discrete variables) is:

$$f_A(y_i = 0) = 1, \ f_A(y_i > 0) = 0.$$

For group B, the count is Poisson distributed:

$$f_B(y_i|\lambda_i) = rac{\lambda_i^y}{y_i!} e^{-\lambda_i}$$

Suppose an observation belongs to group A with probability π_i and group B with probability $1 - \pi_i$.

Then any observation has the average of these two distributions:

$$f(y_i|\pi_i,\lambda_i) = \pi_i f_A(y_1=0) + (1-\pi_i) f_B(y_i|\lambda_i)$$
$$= \pi_i + (1-\pi_i) \frac{\lambda_i^y}{y_i!} e^{-\lambda_i}$$

POLI803 | Week 6

26 / 30

Review

$$f(y_i|\pi_i,\lambda_i) = \pi_i + (1-\pi_i) \frac{\lambda_i^{y_i}}{y_i!} e^{-\lambda_i}$$

$$f(y_i|\pi_i,\lambda_i)=\pi_i+(1-\pi_i)rac{\lambda_i^{y_i}}{y_i!}e^{-\lambda_i}$$

If $y_i = 0$, then this PMF becomes

$$f(y_i = 0 | \pi_i, \lambda_i) = \pi_i + (1 - \pi_i) \frac{\lambda^0}{0!} e^{-\lambda_i}$$

= $\pi_i + (1 - \pi_i) e^{-\lambda_i}$

POLI803 | Week 6

$$f(y_i|\pi_i,\lambda_i)=\pi_i+(1-\pi_i)rac{\lambda_i^{y_i}}{y_i!}e^{-\lambda_i}$$

If $y_i = 0$, then this PMF becomes

$$f(y_i = 0 | \pi_i, \lambda_i) = \pi_i + (1 - \pi_i) \frac{\lambda^0}{0!} e^{-\lambda_i}$$

= $\pi_i + (1 - \pi_i) e^{-\lambda_i}$

If $y_i > 0$, then this PMF becomes

$$f(y_i > 0 | \pi_i, \lambda_i) = (1 - \pi_i) \frac{\lambda_i^{y_i}}{y_i!} e^{-\lambda_i}$$

POLI803 | Week 6

30

$$f(y_i|\pi_i,\lambda_i)=\pi_i+(1-\pi_i)rac{\lambda_i^{y_i}}{y_i!}e^{-\lambda_i}$$

If $y_i = 0$, then this PMF becomes

$$f(y_i = 0 | \pi_i, \lambda_i) = \pi_i + (1 - \pi_i) \frac{\lambda^0}{0!} e^{-\lambda_i}$$

= $\pi_i + (1 - \pi_i) e^{-\lambda_i}$

If $y_i > 0$, then this PMF becomes

$$f(y_i > 0 | \pi_i, \lambda_i) = (1 - \pi_i) \frac{\lambda_i^{y_i}}{y_i!} e^{-\lambda_i}$$

Define a dummy variable I_{0i} to indicate whether $y_i = 0$, then the whole stochastic component is

$$f(y_i|\pi_i,\lambda_i) = \left(\underbrace{\pi_i + (1-\pi_i)e^{-\lambda_i}}_{\text{Bernoulli}}\right)^{I_{0i}} \left(\underbrace{(1-\pi_i)\frac{\lambda_i^{y_i}}{y_i!}e^{-\lambda_i}}_{\text{Count POLI863 | Week 6}}\right)^{1-I_{0i}}_{\text{Count POLI863 | Week 6}}$$

Example

Zero-inflated Poisson

We are going to fit both π_i and λ_i with linear aggregators, so that we can predict which observations have a count, and the count for those that do.

$$y_{i\lambda}^* = \alpha_1 + \beta_1 x_{1i}$$
$$y_{i\pi}^* = \alpha_2 + \beta_2 x_{2i}$$

POLI803 | Week 6 28 / 30

Example

Zero-inflated Poisson

We are going to fit both π_i and λ_i with linear aggregators, so that we can predict which observations have a count, and the count for those that do.

 $y_{i\lambda}^* = \alpha_1 + \beta_1 x_{1i}$ $y_{i\pi}^* = \alpha_2 + \beta_2 x_{2i}$

and two link functions

$$\lambda_i = e^{y_{i\lambda}^*}$$
 $\pi_i = rac{1}{1 + e^{-y_{i\pi}^*}}$

Note: we have different coefficients and we can have different x variables for each part.

POLI803 | Week 6 28 / 30

Zero-inflated Poisson

Quantities of interest:

• Probability of not being "at risk" (immune to events):

 π_i

POLI803 | Week 6 29 / 30

Zero-inflated Poisson

Quantities of interest:

• Probability of not being "at risk" (immune to events):

 π_i

• Average count, conditional on having a count at all:

 λ_i

POLI803 | Week 6 29 / 30

Zero-inflated Poisson

Quantities of interest:

• Probability of not being "at risk" (immune to events):

 π_i

• Average count, conditional on having a count at all:

 λ_i

• Average count:

 $(1-\pi_i)\lambda_i$

POLI803 | Week 6 29 / 30

POLI803 | Week 6 _____ 29 / 30

Zero-inflated Poisson

Quantities of interest:

• Probability of not being "at risk" (immune to events):

 π_i

• Average count, conditional on having a count at all:

 λ_i

• Average count:

$$(1-\pi_i)\lambda_i$$

Note: when a particular x_k appears both in the y_{π}^* equation and in the y_{λ}^* equation, the sign of β_k can be really misleading. Interpret them carefully.

Estimation: pscl package

• To fit a zero-inflated poisson regression in R:

library(pscl) zeroinfl(Y \sim X1 + X2 + X3... | Z1 + Z2 + Z3 ..., data = data, dist = "poisson")

• To fit a zero-inflated negative binomial regression in R:

library(pscl) zeroinfl(Y \sim X1 + X2 + X3... | Z1 + Z2 + Z3 ..., data = data, dist = "negbin")