Week 5: Multinomial Logit Model POLI803

Howard Liu

Week 5, 2024

University of South Carolina

Review: Latent Variable Approach

 Y^* : unobservable utility of taking certain actions

$$Y^* = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

POLI803 | Week 5 2 / 27

Review: Latent Variable Approach

 Y^* : unobservable utility of taking certain actions

$$Y^* = X\beta + \epsilon$$

Binary outcome (logit)

$$Y = \begin{cases} 1 & \text{if } Y^* > 0 \\ 0 & \text{if } Y^* \le 0 \end{cases}$$

Review: Latent Variable Approach

 Y^* : unobservable utility of taking certain actions

$$Y^* = \boldsymbol{X}\boldsymbol{\beta} + \epsilon$$

Binary outcome (logit)

$$Y = \begin{cases} 1 & \text{if } Y^* > 0 \\ 0 & \text{if } Y^* \le 0 \end{cases}$$

Ordered outcome (ordered logit)

$$Y = \begin{cases} 2 & \text{if } Y^* > cut_2 \\ 1 & \text{if } cut_1 < Y^* \le cut_2 \\ 0 & \text{if } Y^* \le cut_1 \end{cases}$$

POLI803 | Week 5 2 / 27

Extending this to unordered DVs

Things get more complicated when we have an unordered categorical DV

Extending this to unordered DVs

- Things get more complicated when we have an unordered categorical DV
- We can no longer assume a direction

Some may have A > B > C, others may have B > C > A, etc.

Extending this to unordered DVs

- Things get more complicated when we have an unordered categorical DV
- We can no longer assume a <u>direction</u>
 Some may have A > B > C, others may have B > C > A, etc.
- We assume random utility (assign a latent variable) for each outcome

for A, B, C, we have Y_A^* , Y_B^* , and Y_C^*

Extending this to unordered DVs

- Things get more complicated when we have an unordered categorical DV
- We can no longer assume a <u>direction</u>
 Some may have A > B > C, others may have B > C > A, etc.
- We assume random utility (assign a latent variable) for each outcome

for A, B, C, we have Y_A^* , Y_B^* , and Y_C^*

$$Y = \begin{cases} A & \text{if } Y_A^* > Y_B^* \text{ and } Y_A^* > Y_C^* \\ B & \text{if } Y_B^* > Y_A^* \text{ and } Y_B^* > Y_C^* \\ C & \text{if } Y_C^* > Y_A^* \text{ and } Y_C^* > Y_B^* \end{cases}$$

Extending this to unordered DVs

- Things get more complicated when we have an unordered categorical DV
- We can no longer assume a <u>direction</u>
 Some may have A > B > C, others may have B > C > A, etc.
- We assume random utility (assign a latent variable) for each outcome

for A, B, C, we have Y_A^* , Y_B^* , and Y_C^*

$$Y = \begin{cases} A & \text{if } Y_A^* > Y_B^* \text{ and } Y_A^* > Y_C^* \\ B & \text{if } Y_B^* > Y_A^* \text{ and } Y_B^* > Y_C^* \\ C & \text{if } Y_C^* > Y_A^* \text{ and } Y_C^* > Y_B^* \end{cases}$$

• The model is called multinomial logit model

Multinomial Logit Model

When we have k number of categories, we assume k number of utilities:

$$Y_{A}^{*} = \mathbf{X}\beta_{A} + \epsilon_{A}$$
$$Y_{B}^{*} = \mathbf{X}\beta_{B} + \epsilon_{B}$$
$$Y_{C}^{*} = \mathbf{X}\beta_{C} + \epsilon_{C}$$

 \pmb{X} is common, but \pmb{eta} differs

Multinomial Logit Model

When we have k number of categories, we assume k number of utilities:

$$Y_{A}^{*} = \mathbf{X}\beta_{\mathbf{A}} + \epsilon_{A}$$
$$Y_{B}^{*} = \mathbf{X}\beta_{\mathbf{B}} + \epsilon_{B}$$
$$Y_{C}^{*} = \mathbf{X}\beta_{\mathbf{C}} + \epsilon_{C}$$

 \pmb{X} is common, but $\pmb{\beta}$ differs

We set one category as the <u>baseline</u>, estimating k - 1 sets of β s

$$Y_A^* = \mathbf{X}\beta_{\mathbf{A}} + \epsilon_A$$
$$Y_B^* = \mathbf{X}\beta_{\mathbf{B}} + \epsilon_B$$
$$Y_C^* = 0$$

POLI803 | Week 5 4 / 27

$$Y_{A}^{*} = \mathbf{X}\beta_{\mathbf{A}} + \epsilon_{A}$$
$$Y_{B}^{*} = \mathbf{X}\beta_{\mathbf{B}} + \epsilon_{B}$$
$$Y_{C}^{*} = 0$$

- the estimated β_A shows the effect of X on the utility of choosing A relative to C
- the estimated β_B shows the effect of X on the utility of choosing B relative to C

$$Y_A^* = \mathbf{X}\beta_{\mathbf{A}} + \epsilon_A$$
$$Y_B^* = \mathbf{X}\beta_{\mathbf{B}} + \epsilon_B$$
$$Y_C^* = 0$$

- the estimated β_A shows the effect of X on the utility of choosing A relative to C
- the estimated β_B shows the effect of X on the utility of choosing B relative to C
- contrarily, the effect of **X** on the utility of choosing *C* relative to *A* is

$$Y_A^* = \mathbf{X}\beta_{\mathbf{A}} + \epsilon_A$$
$$Y_B^* = \mathbf{X}\beta_{\mathbf{B}} + \epsilon_B$$
$$Y_C^* = 0$$

- the estimated β_A shows the effect of X on the utility of choosing A relative to C
- the estimated β_B shows the effect of X on the utility of choosing B relative to C
- contrarily, the effect of **X** on the utility of choosing C relative to A is $-\beta_A$

$$Y_A^* = \mathbf{X}\beta_{\mathbf{A}} + \epsilon_A$$
$$Y_B^* = \mathbf{X}\beta_{\mathbf{B}} + \epsilon_B$$
$$Y_C^* = 0$$

- the estimated β_A shows the effect of X on the utility of choosing A relative to C
- the estimated β_B shows the effect of X on the utility of choosing B relative to C
- contrarily, the effect of **X** on the utility of choosing C relative to A is $-\beta_A$
- contrarily, the effect of **X** on the utility of choosing *C* relative to *B* is

$$Y_A^* = \mathbf{X}\beta_{\mathbf{A}} + \epsilon_A$$
$$Y_B^* = \mathbf{X}\beta_{\mathbf{B}} + \epsilon_B$$
$$Y_C^* = 0$$

- the estimated β_A shows the effect of X on the utility of choosing A relative to C
- the estimated β_B shows the effect of X on the utility of choosing B relative to C
- contrarily, the effect of **X** on the utility of choosing C relative to A is $-\beta_A$
- contrarily, the effect of **X** on the utility of choosing C relative to B is $-\beta_B$

$$Y_A^* = \mathbf{X}\beta_{\mathbf{A}} + \epsilon_A$$
$$Y_B^* = \mathbf{X}\beta_{\mathbf{B}} + \epsilon_B$$
$$Y_C^* = 0$$

When we use C as the baseline

.

- the estimated β_A shows the effect of X on the utility of choosing A relative to C
- the estimated β_B shows the effect of X on the utility of choosing B relative to C
- contrarily, the effect of **X** on the utility of choosing C relative to A is $-\beta_A$
- contrarily, the effect of **X** on the utility of choosing C relative to B is $-\beta_B$
- the effect of **X** on the utility of choosing A relative to B is

$$Y_A^* = \mathbf{X}\beta_{\mathbf{A}} + \epsilon_A$$
$$Y_B^* = \mathbf{X}\beta_{\mathbf{B}} + \epsilon_B$$
$$Y_C^* = 0$$

When we use C as the baseline

.

- the estimated β_A shows the effect of X on the utility of choosing A relative to C
- the estimated β_B shows the effect of X on the utility of choosing B relative to C
- contrarily, the effect of **X** on the utility of choosing C relative to A is $-\beta_A$
- contrarily, the effect of **X** on the utility of choosing C relative to B is $-\beta_B$
- the effect of **X** on the utility of choosing A relative to B is ?

When we use C as the baseline, the effect of X on the utility of choosing A relative to B is not shown

When we use C as the baseline, the effect of X on the utility of choosing A relative to B is not shown

We thus have to estimate an alternative model as well:

$$Y_{A}^{*} = \mathbf{X}\beta_{A}^{\prime} + \epsilon_{A}$$
$$Y_{B}^{*} = 0$$
$$Y_{C}^{*} = \mathbf{X}\beta_{C}^{\prime} + \epsilon_{C}$$

• the estimated β'_A shows the effect of **X** on the utility of choosing A relative to B

When we use C as the baseline, the effect of X on the utility of choosing A relative to B is not shown

We thus have to estimate an alternative model as well:

$$Y_{A}^{*} = \mathbf{X}\beta_{A}^{\prime} + \epsilon_{A}$$
$$Y_{B}^{*} = 0$$
$$Y_{C}^{*} = \mathbf{X}\beta_{C}^{\prime} + \epsilon_{C}$$

- the estimated β'_A shows the effect of **X** on the utility of choosing A relative to B
- the estimated β'_{C} shows the effect of X on the utility of choosing C relative to B, which is equal to $-\beta_{B}$ from the model where C is the baseline

Therefore, when we have three outcomes: A, B, and C, we report three sets of results:

- **(1)** A vs B (the effect of **X** on Y_A^* relative to Y_B^*)
- 2 A vs C (the effect of **X** on Y_A^* relative to Y_C^*)
- **3** B vs C (the effect of **X** on Y_B^* relative to Y_C^*)

A combination of choosing 2 from k categories C_2^k

.

Therefore, when we have three outcomes: A, B, and C, we report three sets of results:

- **1** A vs B (the effect of **X** on Y_A^* relative to Y_B^*)
- 2 A vs C (the effect of **X** on Y_A^* relative to Y_C^*)
- **3** B vs C (the effect of **X** on Y_B^* relative to Y_C^*)

A combination of choosing 2 from k categories C_2^k

.

- To obtain (2) and (3), we estimate a model using C as the baseline
- To obtain (1), we estimate a model using B as the baseline

• Disputes over territory are particularly war-prone

• Disputes over territory are particularly war-prone

• Countries with a territorial disagreement are not always fighting

• Disputes over territory are particularly war-prone

• Countries with a territorial disagreement are not always fighting

Three unordered outcomes can be distinguished

- Most of the time they do nothing: Status quo (SQ)
- Sometimes states engage in a negotiation: Negotiation
- Sometimes states fight over the territory: Militarization

• Disputes over territory are particularly war-prone

• Countries with a territorial disagreement are not always fighting

Three unordered outcomes can be distinguished

- Most of the time they do nothing: Status quo (SQ)
- Sometimes states engage in a negotiation: Negotiation
- Sometimes states fight over the territory: Militarization

- Data (Paul Huth and his collaborators)
 - Unit: dispute-month, 1944 2000
 - Outcome: SQ, Negotiation, Militarization

Huth, Crocco, and Appel (2012, *ISQ*)

.

IDV: whether or not the challenger has a legal advantage

Huth, Crocco, and Appel (2012, *ISQ*)

IDV: whether or not the challenger has a legal advantage

Hypotheses:

• When challenger has a legal advantage, SQ becomes less likely (than other outcomes)

Huth, Crocco, and Appel (2012, *ISQ*)

IDV: whether or not the challenger has a legal advantage

Hypotheses:

- When challenger has a legal advantage, SQ becomes less likely (than other outcomes)
- When challenger has a legal advantage, Negotiation becomes more likely

Huth, Crocco, and Appel (2012, *ISQ*)

IDV: whether or not the challenger has a legal advantage

Hypotheses:

- When challenger has a legal advantage, SQ becomes less likely (than other outcomes)
- When challenger has a legal advantage, Negotiation becomes more likely
- When challenger has a legal advantage, Militarization becomes less likely

Multinomial Logit

Distribution of DV

DV:

.

> table(td \$ dvsqb)

.

0 1 2 2459 1140 241 **Multinomial Logit**

Distribution of DV

DV:

> td \$ dvsqb.cat <- factor(td \$ dvsqb, + label = c("SQ","Neg", "Mil")) > table(td \$ dvsqb.cat) SQ Neg Mil

.

2459 1140 241

Multinomial Logit

Distribution of IDV

IDV:

> table(td \$ slc3b)

.

0 1 3671 169

Distribution of IDV

IDV: List of disputants where IDV = 1

target	challenger	
Namibia	Botswana	7
Libyan Arab Jamahiriya	Chad	532
Israel	Egypt	745
United Kingdom	Iran, Islamic Republic Of	809
Uruguay	Argentina	1610
United States	Nicaragua	2037
Argentina	Paraguay	2184
Russian Federation	Afghanistan	2321
Indonesia	Portugal	3298
Turkey	Cyprus	3451
Hungary	Czechoslovakia	3477
Italy	France	3519
Hungary	Romania	3683
France	German Federal Republic	3791

Multinomial Logit: Estimation

To estimate a multinomial logit model, we use the multinom function from the nnet package

```
> library(nnet)
> fit.0 <- multinom(dvsqb.cat ~ slc3b, data = td)
# weights: 9 (4 variable)
initial value 4218.671188
iter 10 value 3137.766235
final value 3137.761465
converged</pre>
```

In fitting a multinomial logit model, R assumes that the first category (in our case, SQ) is the baseline

	Dependent variable:	
	Neg vs. SQ	Mil vs. SQ
	(1)	(2)
slc3b	0.717*** (0.162)	-0.030 (0.376)
Constant	-0.804*** (0.037)	-2.322*** (0.069)
Akaike Inf. Crit.	6,283.523	6,283.523
Note:	*p<0.1; **p<	0.05; ***p<0.01

• Results from one model shown in two columns

	Dependent variable:	
	Neg vs. SQ	Mil vs. SQ
	(1)	(2)
slc3b	0.717*** (0.162)	-0.030 (0.376)
Constant	-0.804*** (0.037)	-2.322*** (0.069)
Akaike Inf. Crit.	6,283.523	6,283.523
Note:	*p<0.1; **p<	0.05; ***p<0.01

- Results from one model shown in two columns
- SQ is the baseline
 - 0.717 is the effect of slc3b on Y^*_{Neg} relative to Y^*_{SQ}
 - -0.030 is the effect of slc3b on Y^*_{Mil} relative to Y^*_{SQ}

.

We have obtained two sets of coefficients so far:

- Y^*_{Neg} vs Y^*_{SQ}
- Y^*_{Mil} vs Y^*_{SQ}

.

We have obtained two sets of coefficients so far:

- $\bullet \ Y^*_{Neg} \ {\rm vs} \ Y^*_{SQ}$
- Y^*_{Mil} vs Y^*_{SQ}

However, we haven't got coefficients for:

•
$$Y^*_{Neg}$$
 vs Y^*_{Mil}

We have obtained two sets of coefficients so far:

- Y^*_{Neg} vs Y^*_{SQ}
- Y^*_{Mil} vs Y^*_{SQ}

However, we haven't got coefficients for:

• Y^*_{Neg} vs Y^*_{Mil}

We have to do another round of estimation (of the same model), using either Neg or Mil as the baseline

.

Multinomial Logit: Recoding the DV

Note that R automatically chooses the first category as the baseline:

$$dvsqb = \begin{cases} 0 & \text{for SQ} \\ 1 & \text{for Neg} \\ 2 & \text{for Mil} \end{cases}$$

We create a new variable that assigns a different number to the category, so we got the order we want

$$dvsqb.base1 = \begin{cases} 1 & \text{for Neg} \\ 2 & \text{for Mil} \\ 3 & \text{for SQ} \end{cases}$$

	Dependent variable:		
	Mil vs. Neg	SQ vs. Neg	
	(1)	(2)	
slc3b	-0.747** (0.378)	-0.717*** (0.162)	
Constant	-1.518*** (0.072)	0.804*** (0.037)	
Akaike Inf. Crit.	6,283.523	6,283.523	
Note:	*p<0.1; **p<0.05; ***p<0.01		

- Results from one model shown in two columns
- Neg is the baseline
 - -0.747 is the effect of slc3b on Y^*_{Mil} relative to Y^*_{Neg}
 - -0.717 is the effect of slc3b on Y_{SQ}^* relative to Y_{Neg}^*

	Dependent variable:			
	Neg vs. SQ	Mil vs. SQ	Mil vs. Neg	SQ vs. Neg
	(1)	(2)	(3)	(4)
slc3b	0.717*** (0.162)	-0.030 (0.376)	-0.747** (0.378)	-0.717*** (0.162)
Constant	-0.804*** (0.037)	-2.322*** (0.069)	-1.518^{***} (0.072)	0.804*** (0.037)
Akaike Inf. Crit.	6,283.523	6,283.523	6,283.523	6,283.523
Note:			*p<0.1; **p<0.0	05; ***p<0.01

- SQ is the baseline in (1) and (2)
- Neg is the baseline in (3) and (4)
- $\beta_{(4)}$ is equal to $-\beta_{(1)}$

	L	Dependent varial	ole:
	Neg vs SQ	Mil vs SQ	Mil vs Neg
	(1)	(2)	(3)
slc3b	0.717*** (0.162)	-0.030 (0.376)	-0.747** (0.378)
Constant	-0.804*** (0.037)	-2.322*** (0.069)	-1.518*** (0.072)
Akaike Inf. Crit.	6,283.523		
Note:	*	*p<0.1; **p<0.0	95; ***p<0.01

.

POLI803 | Week 5

	Dependent variable:		
	Neg vs SQ	Mil vs SQ	Mil vs Neg
	(1)	(2)	(3)
slc3b	0.717*** (0.162)	-0.030 (0.376)	-0.747** (0.378)
Constant	-0.804*** (0.037)	-2.322*** (0.069)	-1.518*** (0.072)
Akaike Inf. Crit.	6,283.523		
Note:	*p<0.1; **p<0.05; ***p<0.01		

• Legal advantage makes Neg more likely relative to SQ

	Ľ	Dependent variable:		
	Neg vs SQ	Mil vs SQ	Mil vs Neg	
	(1)	(2)	(3)	
slc3b	0.717*** (0.162)	-0.030 (0.376)	-0.747** (0.378)	
Constant	-0.804*** (0.037)	-2.322*** (0.069)	-1.518*** (0.072)	
Akaike Inf. Crit.	6,283.523			
Note:	*	p<0.1; **p<0.0	05; ***p<0.01	

- Legal advantage makes Neg more likely relative to SQ
- Legal advantage makes Neg more likely relative to Mil

	Ľ	Dependent variable:		
	Neg vs SQ	Mil vs SQ	Mil vs Neg	
	(1)	(2)	(3)	
slc3b	0.717*** (0.162)	-0.030 (0.376)	-0.747** (0.378)	
Constant	-0.804*** (0.037)	-2.322*** (0.069)	-1.518*** (0.072)	
Akaike Inf. Crit.	6,283.523			
Note:	*	p<0.1; **p<0.0	05; ***p<0.01	

- Legal advantage makes Neg more likely relative to SQ
- Legal advantage makes Neg more likely relative to Mil
- Legal advantage doesn't make Mil more/less likely relative to SQ

 Recall that coefficients (β) represents the effect of X on Y*, but we are interested in their effects on outcome probabilities

 Recall that coefficients (β) represents the effect of X on Y*, but we are interested in their effects on outcome probabilities

• We use the effect function to calculate substantive effects (marginal effects)

POLI803 | Week 5 20 / 27

- Recall that coefficients (β) represents the effect of X on Y*, but we are interested in their effects on outcome probabilities
- We use the effect function to calculate substantive effects (marginal effects)

• Note: we have done two sets of estimation of the same model

No matter which version we use, we will get the same substantive effects $% \left({{{\rm{s}}_{\rm{s}}}} \right)$


```
> effect(term = "slc3b", mod = fit.0)
slc3b effect (probability) for SQ
s1c3b
        Ø
                0.Z
                          0.4
                                    0.6
                                               0.8
                                                           1
0.6469627 0.6195382 0.5906089 0.5603775 0.5290925 0.4970415
slc3b effect (probability) for Neg
slc3b
        0
                0.Z
                          0.4
                                    0.6
                                               0.8
                                                           1
0.2895669 0.3200413 0.3521326 0.3856162 0.4202179 0.4556212
slc3b effect (probability) for Mil
slc3b
         Ø
                  0.2
                             0.4
                                        0.6
                                                    0.8
                                                                 1
0.06347044 0.06042046 0.05725845 0.05400624 0.05068957 0.04733728
```

POLI803 | Week 5 21 / 27


```
> effect(term = "slc3b", mod = fit.0)
slc3b effect (probability) for SQ
s1c3b
        Ø
                0.Z
                          0.4
                                     0.6
                                               0.8
                                                           1
0.6469627 0.6195382 0.5906089 0.5603775 0.5290925 0.4970415
slc3b effect (probability) for Nea
slc3b
        Ø
                0.2
                          0.4
                                     0.6
                                               0.8
                                                           1
0.2895669 0.3200413 0.3521326 0.3856162 0.4202179 0.4556212
slc3b effect (probability) for Mil
slc3b
         Ø
                  0.2
                             0.4
                                         0.6
                                                    0.8
                                                                 1
0.06347044 0.06042046 0.05725845 0.05400624 0.05068957 0.04733728
```

There's something wrong here. What is that?

• The IDV we have is a binary variable (can only take 0 OR 1)

.

• The IDV we have is a binary variable (can only take 0 OR 1)

• We should only have two sets of probabilities (six probabilities)

• The IDV we have is a binary variable (can only take 0 OR 1)

• We should only have two sets of probabilities (six probabilities)

• To make R realize that this is a binary variable, convert this into a factor variable and re-estimate the model before we use the effect function


```
slc3b.fac effect (probability) for SQ
slc3b.fac
       No
                Yes
0.6469627 0.4970415
slc3b.fac effect (probability) for Neg
slc3b.fac
       No
                Yes
0.2895669 0.4556212
slc3b.fac effect (probability) for Mil
slc3b.fac
        No
                  Yes
0.06347044 0.04733728
```

POLI803 | Week 5

slc3b.fac effect plot

POLI803 | Week 5

POLI803 | Week 5 25 / 27

Multinomial Logit: Replication

	Negotiations vs. threaten force	Status quo vs. force	Negotiations vs. status quo
International law			
Strong legal claims	0.744 (0.357)***	0.127 (0.265)	0.617 (0.241)***
Controls			
Democracy	0.794 (0.342)***	0.480 (0.314)†	0.314 (0.115)***
Military balance	-1.310 (0.330) ***	-1.114 (0.302) ***	-0.196(0.209)
Common security ties	0.081 (0.203)	0.107 (0.232)	-0.189(0.121)
Strategic territory	-0.181(0.252)	-0.210(0.233)	0.029 (0.136)
Ethnic ties	0.050 (0.207)	-0.243 (0.205)	0.293 (0.115)**
Enduring rivals	-0.836 (0.216)**	$-1.130 (0.196)^{***}$	0.293 (0.136)**
Constant	2.073 (0.257) +++	2.750 (0.253)	-0.676 (0.142)†††

TABLE 2. Multinomial Logit Analysis of Decision to Challenge the Status Quo

(Notes. N = 3840. Clustered standard errors in parentheses.

p < .05, *p < .01 (one-tailed) $\dagger p < .1$, $\dagger \dagger \dagger p < .01$ (two-tailed).)

- The authors have other independent variables
- The authors use Mil as the baseline for the first two and SQ as the baseline for the last

Multinomial Logit: Replication

- Strong legal claims: slc3b.fac
- Democracy: demdum
- Military balance: milratio
- Common security ties: alliance
- Strategic territory: strvalue
- Ethnic ties: ethvalue1
- Enduring rivals: endriv5b
- Duration control: sqtime1 included but not shown