Multinomial Logit regression

1. Preparation

rm(list = ls())       # delete everything in the memory
library(foreign)      # for read.dta
library(ggplot2)      # for graphics
library(stargazer)    # Regression table
library(effects)      # for effect
library(nnet)         # for multinom
library(countrycode)  # for country code

Note: Starting from today, you need to learn how to describe your data, model, and design in your empirical section of your research paper. Make everything transparent and easy to understand.

2. Download the data

We will replicate the main results of Huth, Crocco, & Appel’s (2005) analysis of territorial dispute outcome. The article and the data set are available on Blackboard.

Download the replication data set (isq dvsqb.dta.dta) from Blackboard, and save it to a location where you can access from.

3. Load the data

Load the Terris & Maoz data set

td <- read.dta("isq_dvsqb.dta")

4. Distribution of DV

dvsqb is the dependent variable that measures an outcome of a territorial dispute for a given dispute-month. This is essentially a foreign policy choice made by the “challenger” in a territorial dispute in a given month. It takes three values, 0 (maintain status quo / do nothing), 1 (call for negotiation), and 2 (use or threaten to use military force). Use the table function to find the distribution of this variable.

table(td$dvsqb)
## 
##    0    1    2 
## 2459 1140  241

5. recode DV

We will recode this variable and make it into a factor variable. We do this because doing so will make the subsequent interpretation process easier (the stargazer table will automatically have intuitive labels if we do this).

Let’s create a new variable named dvsqb.cat that has three values, “SQ”, “Neg”, and “Mil” corresponding to the three numerical values, 0, 1, and 2. Once you create it, make sure it has been created correctly by taking a look at the distribution of the new variable.

td$dvsqb.cat <- factor(td$dvsqb, 
         label = c("SQ","Neg", "Mil"))
table(td$dvsqb.cat)
## 
##   SQ  Neg  Mil 
## 2459 1140  241

Compare this with the original. Check if they are the same.

table(td$dvsqb.cat, td$dvsqb)
##      
##          0    1    2
##   SQ  2459    0    0
##   Neg    0 1140    0
##   Mil    0    0  241

6. Distribution of IV

slc3b is the main independent variable, which measures whether or not the challenger has a clear legal advantage in its territorial claim (= 1) or not (= 0). The value of 0 means either one of the following: (1) both the challenger and the target has a legitimate legal claim (maybe the challenger has an advantage based on some treaty, whereas the target has an advantage based on some customary international law), (2) only the target has a legitimate claim, (3) neither the challenger nor target has a legitimate legal claim (legal precedence is unclear with respect to the claim). Find the distribution of this variable.

table(td$slc3b)
## 
##    0    1 
## 3671  169

7. country name

The cowcntry variable records the COW country code of the challenger state, whereas the opponent variable is for the target. Using the countrycode function from the countrycode package, convert these variables into country names.

td $ challenger <- countrycode(td$cowcntry, origin = "cown", destination = "country.name")
## Warning: Some values were not matched unambiguously: 260
td $ target <- countrycode(td$opponent, origin = "cown", destination = "country.name")

8. Examine your data

dispute-dyad with slc3b==1

List up all the challenger-target pairs where the challenger has a clear legal advantage. The output should look like the one on slide 13. That is, there will be 14 unique country pairs where slc3b is equal to 1.

unique(td[td $ slc3b == 1, c("challenger", "target")])
##          challenger         target
## 7          Botswana        Namibia
## 532            Chad          Libya
## 745           Egypt         Israel
## 809            Iran United Kingdom
## 1610      Argentina        Uruguay
## 2037      Nicaragua  United States
## 2184       Paraguay      Argentina
## 2321    Afghanistan         Russia
## 3298       Portugal      Indonesia
## 3451         Cyprus         Turkey
## 3477 Czechoslovakia        Hungary
## 3519         France          Italy
## 3683        Romania        Hungary
## 3791           <NA>         France

dispute-dyad with slc3b==0

List up all the challenger-target pairs where the challenger does not have a clear legal advantage. The output is quite long. A subset of this list is shown on slide 14. There will be 165 unique country pairs where slc3b is equal to 0.

unique(td[td$slc3b == 0, c("challenger", "target")])
##                      challenger                     target
## 1                         Benin                      Niger
## 18               United Kingdom                   Ethiopia
## 28                      Comoros                     France
## 54                     Ethiopia             United Kingdom
## 55                     Ethiopia                      Kenya
## 79                     Ethiopia                      Sudan
## 114                       Gabon          Equatorial Guinea
## 115                       Ghana              Côte d’Ivoire
## 116                       Ghana                     France
## 125                       Ghana                       Togo
## 134                     Somalia                   Ethiopia
## 139                       Italy                   Ethiopia
## 183                     Lesotho               South Africa
## 217                     Liberia                     France
## 247                  Madagascar                     France
## 266                      Malawi                     Zambia
## 272                        Mali                 Mauritania
## 275                        Mali               Burkina Faso
## 306                   Mauritius                     France
## 333                   Mauritius             United Kingdom
## 355                     Morocco                 Mauritania
## 356                     Morocco                     France
## 369                     Namibia               South Africa
## 372                     Nigeria                   Cameroon
## 409                     Somalia                      Kenya
## 417                     Somalia             United Kingdom
## 433                     Somalia                     France
## 451                        Togo                      Ghana
## 493                      Uganda                   Tanzania
## 499            Congo - Kinshasa                     Zambia
## 521                     Eritrea                   Ethiopia
## 524                       Niger                      Benin
## 554                        Iraq               Saudi Arabia
## 590     Yemen People's Republic               Saudi Arabia
## 593              United Kingdom               Saudi Arabia
## 596                       Yemen               Saudi Arabia
## 649        United Arab Emirates               Saudi Arabia
## 678                       Egypt             United Kingdom
## 688                       Egypt                      Sudan
## 741                       Egypt                     Israel
## 780                     Eritrea                      Yemen
## 785                        Iran             United Kingdom
## 834                        Iran                       Iraq
## 863                        Iran               Saudi Arabia
## 883                        Iraq             United Kingdom
## 886                        Iraq                     Kuwait
## 940                        Iraq                       Iran
## 955                      Jordan                     Israel
## 997                       Libya                     France
## 998                       Libya                       Chad
## 1017                 Mauritania                      Spain
## 1035                    Morocco                    Algeria
## 1052                    Morocco                      Spain
## 1119        Yemen Arab Republic             United Kingdom
## 1120        Yemen Arab Republic    Yemen People's Republic
## 1157                       Oman               Saudi Arabia
## 1175                      Qatar                    Bahrain
## 1204                     Kuwait               Saudi Arabia
## 1205               Saudi Arabia                     Kuwait
## 1206               Saudi Arabia             United Kingdom
## 1260               Saudi Arabia                     Jordan
## 1284               Saudi Arabia                       Oman
## 1337               Saudi Arabia                      Qatar
## 1338                     Russia                       Iran
## 1350                     Russia                     Turkey
## 1360                      Yemen                       Oman
## 1361    Yemen People's Republic                       Oman
## 1371                      Syria                     Israel
## 1424                    Tunisia                     France
## 1432                    Tunisia                    Algeria
## 1444       United Arab Emirates                       Iran
## 1475       United Arab Emirates                       Oman
## 1495                    Lebanon                     Israel
## 1496                  Argentina             United Kingdom
## 1557                  Argentina                      Chile
## 1642                    Bolivia                      Chile
## 1696                       Cuba              United States
## 1738                    Ecuador                       Peru
## 1794                El Salvador                   Honduras
## 1840                  Guatemala             United Kingdom
## 1846                  Guatemala                     Belize
## 1897                      Haiti              United States
## 1953                   Honduras              United States
## 1981                     Mexico              United States
## 1998                  Nicaragua                   Colombia
## 2020                  Nicaragua                   Honduras
## 2039                   Suriname                     Guyana
## 2040                Netherlands             United Kingdom
## 2042                Netherlands                     Guyana
## 2097                Netherlands                     France
## 2099                   Suriname                     France
## 2153                     Panama              United States
## 2185              United States                     Canada
## 2214                  Venezuela                     Guyana
## 2221                  Venezuela             United Kingdom
## 2263                Afghanistan                   Pakistan
## 2323                      India                     France
## 2326             United Kingdom                     France
## 2333                   Cambodia                    Vietnam
## 2362                   Cambodia                   Thailand
## 2372                      China                Afghanistan
## 2391                      China                     Bhutan
## 2416                      China             United Kingdom
## 2456                      China                      India
## 2478                      China            Myanmar (Burma)
## 2494                      China                    Vietnam
## 2495                      China        Republic of Vietnam
## 2505                      China                     France
## 2559                      China                      Japan
## 2613                      China                      Nepal
## 2626                      China                 Kazakhstan
## 2628                      China                 Kyrgyzstan
## 2636                      China                   Mongolia
## 2654                      China                   Pakistan
## 2670                      China                   Portugal
## 2701                      China                     Russia
## 2774                      China                 Tajikistan
## 2783                     France                   Thailand
## 2784                      India                      China
## 2831                      India                   Pakistan
## 2857                      India                   Portugal
## 2872                  Indonesia                Netherlands
## 2884                  Indonesia                   Malaysia
## 2906                      Japan                     Russia
## 2967                   Malaysia                      China
## 2990                   Malaysia                  Singapore
## 3012                North Korea                South Korea
## 3072                    Vietnam        Republic of Vietnam
## 3086                   Pakistan                      India
## 3153                 Bangladesh                      India
## 3210                   Portugal                      India
## 3223           Papua New Guinea                  Australia
## 3226                Philippines                      China
## 3257                Philippines                   Malaysia
## 3321                South Korea                      Japan
## 3377                   Thailand                     France
## 3380                   Thailand                   Cambodia
## 3382                   Thailand                       Laos
## 3403                    Vanuatu                     France
## 3422                     Brunei                   Malaysia
## 3438                    Austria                      Italy
## 3440                    Croatia                   Slovenia
## 3478 German Democratic Republic              United States
## 3502                    Estonia                     Russia
## 3509                    Finland                     Russia
## 3511                     France             United Kingdom
## 3520                     Greece                    Albania
## 3547                     Greece                   Bulgaria
## 3548                     Greece                     Cyprus
## 3561                     Greece             United Kingdom
## 3570                    Ireland             United Kingdom
## 3627                      Italy                 Yugoslavia
## 3659                     Latvia                     Russia
## 3669                Netherlands                    Belgium
## 3685                   Slovakia                    Czechia
## 3687                      Spain             United Kingdom
## 3746                     Turkey             United Kingdom
## 3753                       <NA>             Czechoslovakia
## 3773                       <NA> German Democratic Republic
## 3793                       <NA>                     Poland
## 3811                       <NA>                Netherlands
## 3816                 Yugoslavia                     Greece
## 3818                 Yugoslavia                    Croatia
## 3826                 Yugoslavia            North Macedonia
## 3831                     Turkey                     Greece

10. multinomial logit (SQ as the baseline)

Using the multinom function from the nnet package, estimate a multinomial logit model that controls for slc3b. Then, create a stargazer table. The results should look exactly like the one on the slide.

library(nnet)
fit.0 <- multinom(dvsqb.cat ~ slc3b, data = td)
## # weights:  9 (4 variable)
## initial  value 4218.671188 
## iter  10 value 3137.766235
## final  value 3137.761465 
## converged

weights refers to the refers to the optional case weights in fitting. They adjust the importance of each observation during model fitting, which may be useful in situations where certain observations are more reliable than others or when dealing with imbalanced datasets.

initial value refers to the starting values used for the parameters (coefficients) in the optimization algorithm that multinom uses to fit the model.

final value refers to the end values in the optimization algorithm

stargazer(fit.0, type = "text")
## 
## ==============================================
##                       Dependent variable:     
##                   ----------------------------
##                        Neg            Mil     
##                        (1)            (2)     
## ----------------------------------------------
## slc3b                0.717***       -0.030    
##                      (0.162)        (0.376)   
##                                               
## Constant            -0.804***      -2.322***  
##                      (0.037)        (0.069)   
##                                               
## ----------------------------------------------
## Akaike Inf. Crit.   6,283.523      6,283.523  
## ==============================================
## Note:              *p<0.1; **p<0.05; ***p<0.01

We will estimate the same model but with a different baseline

11. Create a new variable to be used as the DV

As I explained in the lecture, this result assumes the Status Quo outcome as the baseline. To estimate the same model using the Negotiation outcome as the baseline, we have to recode the dependent variable. Create a new variable named dvsqb.base1 that is coded as follows:

td$dvsqb.base1 <- td$dvsqb
td$dvsqb.base1[td$dvsqb == 0] <- 3

12. Compare this with the original

Run table(td$dvsqb, td$dvsqb.base1) to compare the newly created variable with the original. Make sure that the dvsqb.base1 variable has been correctly created.

table(td $ dvsqb, td $ dvsqb.base1)
##    
##        1    2    3
##   0    0    0 2459
##   1 1140    0    0
##   2    0  241    0

We see that 0 (SQ) is replaced by the number 3. A new order is created.

table(td$dvsqb.cat)
## 
##   SQ  Neg  Mil 
## 2459 1140  241

13. Make it a factor

Create a factor variable that has “SQ”, “Neg”, and “Mil” as values. Name this new variable dvsqb.cat.b1. Be extra careful about the ordering of the labels. That is, keep in mind that the values are now ordered as “Neg”, “Mil”, “SQ”. You have to make some necessary adjustment when using the labels option.

Run table(td$dvsqb.cat.b1) to make sure that you have created this variable correctly. Does the Neg category have 1140 observations? Does the SQ category have 2459 observations? Are they ordered in the correct way?

td $ dvsqb.cat.b1 <- factor(td $ dvsqb.base1, label = c("Neg", "Mil", "SQ"))
table(td $ dvsqb.cat.b1)
## 
##  Neg  Mil   SQ 
## 1140  241 2459

14. Estimate the same m-logit model with Neg as the baseline

Estimate the same multinomial logit model but with Neg as the baseline, then create a stargazer table. The table should look like the one on the slide.

fit.1 <- multinom(dvsqb.cat.b1 ~ slc3b, data = td)
## # weights:  9 (4 variable)
## initial  value 4218.671188 
## iter  10 value 3138.554477
## final  value 3137.761465 
## converged
stargazer(fit.1, type = "text")
## 
## ==============================================
##                       Dependent variable:     
##                   ----------------------------
##                        Mil            SQ      
##                        (1)            (2)     
## ----------------------------------------------
## slc3b                -0.747**      -0.717***  
##                      (0.378)        (0.162)   
##                                               
## Constant            -1.518***      0.804***   
##                      (0.072)        (0.037)   
##                                               
## ----------------------------------------------
## Akaike Inf. Crit.   6,283.523      6,283.523  
## ==============================================
## Note:              *p<0.1; **p<0.05; ***p<0.01

16. Combined table

Create another stargazer table that combines the estimates from the first estimation and the second estimation. The table should look like the one on slide 20. Notice how the fourth column is redundant, for the estimates are exactly the same as the first column except for the signs.

stargazer(fit.0, fit.1, type = "text", 
          column.labels = c("Neg v SQ", "Mil v SQ", "Mil v Neg", "SQ v Neg"))
## 
## =========================================================
##                             Dependent variable:          
##                   ---------------------------------------
##                      Neg            Mil            SQ    
##                   Neg v SQ  Mil v SQ  Mil v Neg SQ v Neg 
##                      (1)       (2)       (3)       (4)   
## ---------------------------------------------------------
## slc3b             0.717***   -0.030   -0.747**  -0.717***
##                    (0.162)   (0.376)   (0.378)   (0.162) 
##                                                          
## Constant          -0.804*** -2.322*** -1.518*** 0.804*** 
##                    (0.037)   (0.069)   (0.072)   (0.037) 
##                                                          
## ---------------------------------------------------------
## Akaike Inf. Crit. 6,283.523 6,283.523 6,283.523 6,283.523
## =========================================================
## Note:                         *p<0.1; **p<0.05; ***p<0.01

17. effects based on fit.0

Calculate the substantive effects of the slc3b variable using the estimation results from Task 10. The output should look like the one on slide 23.

effect(term = "slc3b", mod = fit.0)
## 
## slc3b effect (probability) for SQ
## slc3b
##         0       0.2       0.5       0.8         1 
## 0.6469627 0.6195382 0.5756415 0.5290925 0.4970415 
## 
## slc3b effect (probability) for Neg
## slc3b
##         0       0.2       0.5       0.8         1 
## 0.2895669 0.3200413 0.3687165 0.4202179 0.4556212 
## 
## slc3b effect (probability) for Mil
## slc3b
##          0        0.2        0.5        0.8          1 
## 0.06347044 0.06042046 0.05564210 0.05068957 0.04733728

18. effects based on fit.1

Calculate the substantive effects of the slc3b variable using the estimation results from Task 15. The output should be almost identical to the one you obtained above, except for the ordering of the outcomes. That is, the first one lists the outcome probabilities for SQ, Neg, Mil in this order, whereas the second one lists Neg, Mil, and SQ in this order. However, if you compare the probabilities for the same outcome, the estimates should be almost identical (up to the fourth or fifth decimal point).

effect(term = "slc3b", mod = fit.1)
## 
## slc3b effect (probability) for Neg
## slc3b
##         0       0.2       0.5       0.8         1 
## 0.2895670 0.3200416 0.3687171 0.4202188 0.4556224 
## 
## slc3b effect (probability) for Mil
## slc3b
##          0        0.2        0.5        0.8          1 
## 0.06347074 0.06042051 0.05564181 0.05068899 0.04733654 
## 
## slc3b effect (probability) for SQ
## slc3b
##         0       0.2       0.5       0.8         1 
## 0.6469623 0.6195379 0.5756411 0.5290922 0.4970411

19. Make the IDV a factor

As I pointed out in the lecture, we don’t want to have outcome probabilities for some “unrealistic” values. That is slc3b takes only two values, 0 or 1 and so it never takes values such as 0.2, 0.4, 0.6, or 0.8. Yet, R calculates outcome probabilities for these cases because R doesn’t realize that this is a binary variable. To make R realize this, we should have made slc3b into a factor variable and used it instead when estimating multinomial logit models. Let’s do this now. Create a new variable that is a factor variable that takes a value “No” if slc3b is 0 and “Yes” if slc3b is 1

td $ slc3b.fac <- factor(td $ slc3b, label = c("No", "Yes"))

20. Estimate a m-logit model again, and compare

Estimate a multinomial logit model again. Compare the estimates with the one that includes the original slc3b to make sure that you get the same estimates.

fit.f0 <- multinom(dvsqb.cat ~ slc3b.fac, data = td)
## # weights:  9 (4 variable)
## initial  value 4218.671188 
## iter  10 value 3137.766235
## final  value 3137.761465 
## converged
stargazer(fit.0, fit.f0, type = "text")
## 
## =========================================================
##                             Dependent variable:          
##                   ---------------------------------------
##                      Neg       Mil       Neg       Mil   
##                      (1)       (2)       (3)       (4)   
## ---------------------------------------------------------
## slc3b             0.717***   -0.030                      
##                    (0.162)   (0.376)                     
##                                                          
## slc3b.facYes                          0.717***   -0.030  
##                                        (0.162)   (0.376) 
##                                                          
## Constant          -0.804*** -2.322*** -0.804*** -2.322***
##                    (0.037)   (0.069)   (0.037)   (0.069) 
##                                                          
## ---------------------------------------------------------
## Akaike Inf. Crit. 6,283.523 6,283.523 6,283.523 6,283.523
## =========================================================
## Note:                         *p<0.1; **p<0.05; ***p<0.01

21. Substantive effects

Calculate the substantive effects based on the new model. Make sure that the outputs are similar to the previous one, except that the new one doesn’t have outcome probabilities for “unrealistic” values. (This makes a difference when we plot them. If we plot the previous one, the graph will contain “unrealistic” values and we don’t want that.)

eff.0 <- effect(term = "slc3b.fac", mod = fit.f0)

eff.0
## 
## slc3b.fac effect (probability) for SQ
## slc3b.fac
##        No       Yes 
## 0.6469627 0.4970415 
## 
## slc3b.fac effect (probability) for Neg
## slc3b.fac
##        No       Yes 
## 0.2895669 0.4556212 
## 
## slc3b.fac effect (probability) for Mil
## slc3b.fac
##         No        Yes 
## 0.06347044 0.04733728
plot(Effect("slc3b.fac",fit.f0)) 

22. plot the effects

Plot the substantive effects. The graph should look similar to the one on slide 26.

# pdf(file = "mleff1.pdf", width = 10, height = 7)
plot(eff.0, rescale.axis = FALSE, style = "stacked",
     main = "Effect of legal advantage",
     xlab = "Challenger has a legal advantage",
     ylab = "Outcome probabilities")

# dev.off()

Here I use the marginaleffects package because it’s the only one so far support effect plots with CIs with the m-logit model. More information about the pacakge can be found here.

# remotes::install_github("vincentarelbundock/marginaleffects")
library(marginaleffects)

fit.f0 <- multinom(dvsqb.cat.b1 ~ slc3b, data = td)
## # weights:  9 (4 variable)
## initial  value 4218.671188 
## iter  10 value 3138.554477
## final  value 3137.761465 
## converged
plot_predictions(
    fit.f0,
    type = "probs",
    condition = "slc3b") +
    facet_wrap(~group) +
   theme_bw() +
  ggtitle(element_blank()) +
  xlab("Strong Legal Claim by Challenger") + ylab("Pr(Outcome)") +
  labs(title = "Effect Plot") +
  theme(plot.title = element_text(hjust = 0.5)) 

23. Replication

Full models: include other independent variables

Replicate Table 2 on page 27 of the article as closely as possible. If you can produce something that is close to the one on slide 29, that’s fine. Note that the authors use what’s called “robust” standard errors whereas we don’t, so the standard errors will be somewhat different.

# The authors use Mil as the baseline, so let's do this
td $ dvsqb.base2 <- td $ dvsqb
td $ dvsqb.base2[td $ dvsqb == 2] <- -1
table(td $ dvsqb.base2)
## 
##   -1    0    1 
##  241 2459 1140
table(td $ dvsqb, td $ dvsqb.base2)
##    
##       -1    0    1
##   0    0 2459    0
##   1    0    0 1140
##   2  241    0    0
# Make them a factor
td $ dvsqb.cat.b2 <- factor(td $ dvsqb.base2, label = c("Mil", "SQ", "Neg"))
table(td $ dvsqb.cat.b2)
## 
##  Mil   SQ  Neg 
##  241 2459 1140
# Mil as the baseline
full.mil <- multinom(dvsqb.cat.b2 ~ slc3b.fac + demdum + milratio + alliance + 
                       strvalue + ethvalue1 + endriv5b + sqtime1,
                   data = td)
## # weights:  30 (18 variable)
## initial  value 4218.671188 
## iter  10 value 3151.532819
## iter  20 value 2977.439351
## final  value 2966.553419 
## converged
# SQ as the baseline
full.sq <- multinom(dvsqb.cat ~ slc3b.fac + demdum + milratio + alliance + 
                       strvalue + ethvalue1 + endriv5b + sqtime1,
                     data = td)
## # weights:  30 (18 variable)
## initial  value 4218.671188 
## iter  10 value 2999.001909
## iter  20 value 2969.558159
## final  value 2966.553419 
## converged
stargazer(full.mil, full.sq, type = "text", 
          column.labels = c("SQ v Mil", "Neg v Mil", "Neg v SQ", "Mil v SQ"),
          covariate.labels = c("Strong legal claims", "Democracy", "Military balance", "Common security ties",
                               "Strategic territory", "Ethnic ties", "Enduring rivals", "Sqrt(t)"))
## 
## ============================================================
##                                Dependent variable:          
##                      ---------------------------------------
##                         SQ             Neg            Mil   
##                      SQ v Mil  Neg v Mil Neg v SQ  Mil v SQ 
##                         (1)       (2)       (3)       (4)   
## ------------------------------------------------------------
## Strong legal claims    0.127    0.744*   0.617***   -0.127  
##                       (0.386)   (0.386)   (0.169)   (0.386) 
##                                                             
## Democracy            0.480***  0.794***  0.314***  -0.480***
##                       (0.182)   (0.185)   (0.084)   (0.182) 
##                                                             
## Military balance     -1.113*** -1.310***  -0.196   1.113*** 
##                       (0.262)   (0.273)   (0.137)   (0.262) 
##                                                             
## Common security ties   0.107    -0.081   -0.189**   -0.107  
##                       (0.163)   (0.171)   (0.086)   (0.163) 
##                                                             
## Strategic territory   -0.210    -0.181     0.029     0.210  
##                       (0.158)   (0.164)   (0.089)   (0.158) 
##                                                             
## Ethnic ties           -0.243     0.050   0.293***    0.243  
##                       (0.150)   (0.156)   (0.077)   (0.150) 
##                                                             
## Enduring rivals      -1.130*** -0.836*** 0.293***  1.130*** 
##                       (0.148)   (0.155)   (0.089)   (0.148) 
##                                                             
## Sqrt(t)              1.351***   0.592**  -0.760*** -1.351***
##                       (0.222)   (0.230)   (0.083)   (0.222) 
##                                                             
## Constant             2.750***  2.073***  -0.676*** -2.750***
##                       (0.208)   (0.215)   (0.096)   (0.208) 
##                                                             
## ------------------------------------------------------------
## Akaike Inf. Crit.    5,969.107 5,969.107 5,969.107 5,969.107
## ============================================================
## Note:                            *p<0.1; **p<0.05; ***p<0.01